350 rub
Journal Biomedical Radioelectronics №7 for 2011 г.
Article in number:
Real Time Fluctuation Analysis of Heart Rate
Authors:
А.V. Alpatov, M.Y. Mitrofanova
Abstract:
The article discusses the usage of the fluctuation analysis to evaluate the short-range scaling properties of RR-signals, since the use of short-time implementations allows the analysis of cardiac rhythm fluctuations in real time. Established that since the length of RR-signal is 256 intervals, the fluctuation method based on the DFA algorithm captures the existence of stable correlations in the RR-signal. This number is taken as the basis for the development of windowing method of fluctuation analysis using the local scaling exponent (short-range fluctuation), which reflects the momentary state of the system of regulation: peace or excitement. Value for the scaling exponent throughout the implementation of RR-signal (long-distance fluctuations) reflects the general state of the system. To implement the method of fluctuation analysis of heart rate in real time within the control of the functional state of the person it is proposed to use three-channel calculation of fluctuation parameters: the cumulative (long-range correlations), windowing with accumulation of 256 RR-intervals (short-range correlations), surrogate channel to control the correctness of scaling exponent calculations. The scope of this article does not include the questions of
Pages: 66-71
References
  1. Баевский Р.М., Иванов Г.Г., Чирейкин Л.В., Гаврилушкин А.П., Довгалевский П.Я., Кукушкин Ю.А., Миронова Т.Ф., Прилуцкий Д.А., Семенов А.В., Федоров В.Ф., Флейшман А.Н., Медведев М.М. Анализ вариабельности сердечного ритма при использовании различных электрокардиографических систем (Ч. 1) // Вестник аритмологии. 2004. Т. 24. C. 65-87.
  2. Бакусов К.М., Зулкарнеев Р.Х. Исследование фрактальных характеристик ритма сердца // Вестник новых медицинских технологий. 1997. Т. IV. № 1-2.
  3. Машин В.А. Нестационарность и длительность временного ряда сердечного ритма при диагностике функциональных состояний // Биофизика. 2007. Т. 52. № 2. С. 344-354.
  4. Пархомов. Ритмы и флуктуации в ходе различных процессов: три типа изменчивости. // Web-Институт исследований природы времени. URL: http://www.chronos.msu.ru/RREPORTS/parkhomov_ritmy.pdf (дата обращения 04.04.2011).
  5. Ричард М., Кроновер. Фракталы и хаос в динамических системах. Основы теории. M: Постмаркет. 2000. 352 c.
  6. Fractal Mechanisms in Neural Control: Human Heartbeat and Gait Dynamics in Health and Disease // Physionet. URL: http://www.physionet.org/tutorials/fmnc/index.shtml (дата обращения: 04.04.2011).
  7. Peng C.-K., Costa M., Goldberger A. Adaptive data analysis of complex fluctuations in physiologic time series advances in adaptive data analysis. 2009. V. 1. № 1. P. 61-70.
  8. Peng C.K., Havlin S., Stanley H., Goldberger А. Quantification of scaling exponents and crossover phenomena in nonstationary heartbeat time series // Chaos. 1995. №5 (1). P. 82-87.
  9. Raab C., Kurths J., Schirdewan A., Wessel N. Normalized correlation dimension for heart rate variability analysis // Biomedizinische Technik. 2006. V. 51. Issue 4. P. 229-232.