350 rub
Journal Biomedical Radioelectronics №8 for 2010 г.
Article in number:
Estimation of Vascular Elasticity Based on Analysis of Heart Rate Variability
Authors:
S.G. Gurzhin, L.I. Kalakutsky, A.A. Fedotov
Abstract:
The approach to determining index of vascular elasticity is suggested. The method is based on the difference in spectral characteristics between heart rate variability based on acquisition and processing of ECG signal and pulse rate variability based on acquisition and processing of distal arterial pulse. A mathematical model of hemodynamics processes in cardiovascular system human is considered. Simulation of hemodynamics processes in cardiovascular system has allowed to determine the propagation regularity of the peripheral pulse wave pressure on arterial bed. Based on the above model shows the effect of changes in pulse wave velocity on time-dependent structure of pulse rate variability. These patterns have revealed the influence of vascular regulation in the emergence structure of pulse rate variability at frequencies corresponding to the temporal characteristics of allocation of vasoactive substances. It was shown that a decrease in a vascular elasticity leads to a decrease in total spectral power of cardiologic interval sequences. Thus, the estimation of spectral power of «vascular» component of pulse rate variability can serve as a diagnostic index of vascular elasticity. During the examination of different ages persons experimental confirmation was received. Determining of a diagnostic index of elastic properties of the vascular system through the assessment of the relative spectral power of cardiologic interval sequences obtained by the complex signal processing of pulse and ECG heart rate sensors was proposed.
Pages: 54-59
References
  1. Баевский Р.М., Иванов Г.Г. Вариабельность сердечного ритма: теоретические аспекты и возможности клинического применения. М.: Медицина. 2000. 295 с.
  2. PomeranzB., et al. Assessment of autonomic function in humans by heart rate spectral analysis // Am. J. Physiol. 1985. V. 248. P. 151 - 153.
  3. Жемайтите Д., Воронецкас Г., СоколовЕ.И. Взаимодействие парасимпатического и симпатического отделов ВНС в регуляции сердечного ритма // Физиология человека. 1985. Т. 11. № 3. С. 448 - 450.
  4. Task Force of the European Society of Cardiology and North American Society of Pacing and Electrophysiology. Heart rate variability. Standards of measurement, physiological interpretation and clinical use // Circulation. 1996. V. 93 (5). P. 1043 - 1065.
  5. Баевский P.M., Берсенева А.П. Оценка адаптационных возможностей организма и риск развития заболеваний. М.: Медицина. 1997. 265 с.
  6. La RovereM.T., et al. Baroreflex sensitivity and heart rate variability in the identification of patients at risk for life-threatening arrhythmias: implications for clinical trials // Circulation. 2001. V. 103. P. 2072 - 2077.
  7. Баевский P.M., Кириллов О.И., Клецкин С.З.Математический анализ изменений сердечного ритма при стрессе. М.: Наука. 1984. С. 194 - 220.
  8. Constant I. et al. Pulse rate variability is not a surrogate for heart rate variability // Clinical Science. 1999. V. 97. P. 391 - 397.
  9. DrinnanM.J., et al. Relation between heart rate and pulse transit time during paced respiration // Physiology Measurement. 2001. V. 22. P. 425 - 432.
  10. GiardinoN.D., et al. Comparison of finger plethysmograph to ECG in the measurement of heart rate variability // Psychophysiology. 2002. V. 39. P. 246 - 252.
  11. JohanssonA., et al.Estimation of respiratory volumes from the photoplethysmographic signalpart.1: experimental results // Med. Biol.Eng. Comput. 1999. V. 37. P. 42 - 47.
  12. Калакутский Л.И.,ФедотовА.А. Модель длинной электрической линии для описания артериальной системы человека: Сб. тр. «Медицинскиеприборыитехнологии». Тула. 2009. С. 84 - 88.
  13. John L.R. Forward Electrical transmission line model of the human arterial system // Medical & Biological Engineering & Computing. 2004. V. 42. P. 312 - 320.
  14. Федотов А.А. Моделирование процессов распространения пульсовых волн в магистральных сосудах. // ХХI Всероссийская НТК студентов, молодых ученых и специалистов «Биотехнические, медицинские и экологические системы и комплексы»: Сб. тр. Рязанскийгосударственныйрадиотехническийуниверситет. Рязань. 2008. С. 217 - 223.
  15. Millasseau S.C., et al. Determination of age-related increases in largeartery stiffness by digital pulse contour analysis // Clinical Science. 2002. V. 103. P. 371 - 377.
  16. Yamashina A. et al. Validity, reproducibility, and clinical significance of noninvasive brachial-ankle pulse wave velocity measurement // Hypertension. 2002. V. 25. N. 3. P. 359 - 364.
  17. Blacher J., et al. Aortic pulse wave velocity as a marker of cardiovascular risk in hypertensive patients // Hypertension. 1999. V. 33. P. 1111 - 1117.
  18. Expert Consensus Document on arterial stiffness: methodological issues and clinical applications // European Heart Journal. 2006. V. 27. N. 21. P. 2588 - 2605.
  19. Pan J.,TompkinsW.J. A real time QRS detection algorithm // IEEE trans. Biomed. Eng. 1985.  V. 32. P. 230 - 236.
  20. Рангайян Р.М.Анализ биомедицинских сигналов. Практический подход / пер. с англ. под ред. А.П. Немирко. М.: Физматлит. 2007. 440 с.
  21. Kelly R.P.,O'RourkeM.F. Non-invasive determination of age-related changes in the human arterial pulse // Circulation. 2003. V. 80. P. 1652 - 1659.
  22. Новые возможности оценки артериальной ригидности - раннего маркера развития сердечно-сосудистых заболеваний // Материалы симпозиума.
    М.: Издательский дом «Русский врач». 2007. 48 с.
  23. Власова С.П., Лебедев П.А., Калакутский Л.И. Фотоплетизмограмма в оценке ремоделирования и реактивности артерий у больных с гипертонической болезнью // Конгресс ассоциации кардиологов стран СНГ «Фундаментальные исследования и прогресс в кардиологии». Материалыконгресса. СПб.: 2003. С. 164.