350 руб
Журнал «Антенны» №3 за 2024 г.
Статья в номере:
Метод характеристических мод
Тип статьи: обзорная статья
DOI: https://doi.org/10.18127/j03209601-202403-02
УДК: 621.396.67
Авторы:

В. П. Кудин1, И. А. Фаняев2
1 Гомельский государственный технический университет имени П.О. Сухого (г. Гомель, Республика Беларусь)
2 Гомельский государственный университет имени Франциска Скорины (г. Гомель, Республика Беларусь)

1 vkudzin@mail.ru, 2 Fanyaev@gmail.com

Аннотация:

Постановка проблемы. В настоящее время за рубежом значительно вырос интерес к методу характеристических мод и увеличилось число решаемых с его помощью задач. Привлекательность этого метода заключается в том, что он дает ясную физическую картину происходящих явлений и возможность построить способы создания конструкций с требуемыми параметрами. Однако в отечественной научной литературе метод характеристических мод не получил пока широкого распространения.

Цель. Исследовать возможности метода характеристических мод и области его применения.

Результаты. Проведен обзор публикаций, посвященных методу характеристических мод, как ранних, основополагающих, так и появившихся недавно, а также работ, содержащих решения конкретных электродинамических задач с помощью рассматриваемого метода.

Практическая значимость. Рассмотренный метод характеристических мод будет полезен специалистам при разработке, анализе или синтезе новых антенных конструкций, удовлетворяющих современным требованиям.

Страницы: 7-20
Для цитирования

Кудин В.П., Фаняев И.А. Метод характеристических мод // Антенны. 2024. № 3. С. 7–20. DOI: https://doi.org/10.18127/j03209601-202403-02

Список источников
  1. Garbacz R.J. A generalized expansion for radiated and scattered fields // IEEE Transactions on Antennas and Propagation. 1971. V. 9. № 3. P. 348–358.
  2. Harrington R.F. Theory of characteristic modes for conducting bodies // IEEE Transactions on Antennas and Propagation. 1971. V. 19. № 5. P. 622–628.
  3. Harrington R.F., Mautz J.R. Computation of characteristic modes for conducting bodies // IEEE Transactions on Antennas and Propagation. 1971. V. 19. № 5. P. 629–639.
  4. Harrington R.F., Mautz J.R., Chang Y. Characteristic modes for dielectric and magnetic bodies // IEEE Transactions on Antennas and Propagation. 1972. V. 20. № 2. P. 194–198.
  5. Harrington R.F., Mautz J.R. Control of radar cross section by reactive loading // IEEE Transactions on Antennas and Propagation. 1972. V. 20. № 4. P. 446–454.
  6. Mautz J.R., Harrington R.F. Modal analysis of loaded N-port scatterers // IEEE Transactions on Antennas and Propagation. 1973. V. 21. № 2. P. 188–199.
  7. Harrington R.F., Mautz J.R. Characteristic modes for aperture problems // IEEE Transactions on Antennas and Propagation. 1985. V. 33. № 6. P. 500–505.
  8. Garbacz R.J., Newman E.H. Characteristic modes of a symmetric wire cross // IEEE Transactions on Antennas and Propagation. 1980. V. 28. № 5. P. 712–715.
  9. Harrington R.F. Field computation by moment methods. New York: Machmillan. 1968.
  10. Austin B.A., Murray K.P. The application of characteristic-mode techniques to vehicle-mounted NVIS antennas // IEEE Antennas and Propagation Magazine. 1998. V. 40. № 1. P. 7–21.
  11. Rao S.M., Wilton D.R., Glisson A.W. Electromagnetic scattering by surfaces of arbitrary shape // IEEE Transactions on Antennas and Propagation. 1982. V. 30. № 5. P. 409–418.
  12. Lucente E., Monorchio A., Mittra R. An iteration-free MoM approach based on excitation independent characteristic basis functions for solving large multiscale electromagnetic scattering problems // IEEE Transactions on Antennas and Propagation. 2008. V. 56. № 4. P. 999–1007.
  13. Li C., Sharawi M.S., Mittra R. Fast computation of electromagnetic scattering from dielectric objects using quadrilateral piecewise sinusoidal basis and characteristic basis function method // IEEE Transactions on Antennas and Propagation. 2022. V. 70. № 7. P. 5683–5692.
  14. Lau B.K., Capek M., Hassan A.M. Characteristic modes: Progress, overview, and emerging topics // IEEE Antennas and Propagation Magazine. 2022. V. 64. № 2. P. 14–22.
  15. Chen Y., Wang C.-F. Characteristic modes: Theory and applications in antenna engineering. New York: Wiley. 2015.
  16. Li W., et al. Modal proportion analysis in antenna characteristic mode theory // International Journal of Antennas and Propagation. 2019. V. 2019.
  17. Kaffash S., et al. A fast computational method for characteristic modes and eigenvalues of array antennas // IEEE Transactions on Antennas and Propagation. 2020. V. 68. № 12. P. 7879–7892.
  18. Lian R.Z., Guo X.Y., Xia M.Y. Work-energy principle based characteristic mode theory with solution domain compression for metal-material composite scattering systems // IEEE Transactions on Antennas and Propagation. 2021. V. 70. № 5. P. 3628–3642.
  19. Lian R.Z., Guo X.Y., Xia M.Y. Entire-structure-oriented work-energy theorem (ES-WET)-based characteristic mode theory for material scattering objects // IEEE Transactions on Antennas and Propagation. 2022. V. 70. № 7. P. 5699–5714.
  20. Jia C., et al. Thin dielectric sheet approximation-based characteristic mode formulations for lossless dielectric coated conducting bodies // IEEE Transactions on Antennas and Propagation. 2022. V. 70. № 12. P. 12019–12029.
  21. Shi G., et al. Theoretic study of antenna scattering problems based on characteristic modes and its applications in reducing antenna scattering // IEEE Transactions on Antennas and Propagation. 2022. V. 71. № 3. P. 2098–2109.
  22. Capek M., et al. Method for tracking characteristic numbers and vectors // Progress in Electromagnetics Research B. 2011. V. 33. P. 115–134.
  23. Raines B.D., Rojas R.G. Wideband characteristic mode tracking // IEEE Transactions on Antennas and Propagation. 2012. V. 60. № 7. P. 3537–3541.
  24. Ludick D.J., Jakobus U., Vogel M. A tracking algorithm for the eigenvectors calculated with characteristic mode analysis // The 8th European Conference on Antennas and Propagation (EuCAP 2014). Hague, Netherlands. 2014. P. 569–572.
  25. Miers Z., Lau B.K. Wide band characteristic mode tracking utilizing far-field patterns // IEEE Antennas and Wireless Propagation Letters. 2015. V. 14. P. 1658–1661.
  26. Schab K.R., et al. Eigenvalue crossing avoidance in characteristic modes // IEEE Transactions on Antennas and Propagation. 2016. V. 64. № 7. P. 2617–2627.
  27. Schab K.R., Bernhard J.T. A group theory rule for predicting eigenvalue crossings in characteristic mode analyses // IEEE Antennas and Wireless Propagation Letters. 2016. V. 16. P. 944–947.
  28. Safin E., Manteuffel D. Advanced eigenvalue tracking of characteristic modes // IEEE Transactions on Antennas and Propagation. 2016. V. 64. № 7. P. 2628–2636.
  29. He Q., et al. A double modal parameter tracking method to characteristic modes analysis // Aces Journal. 2017. V. 32. № 12. P. 1069–1076.
  30. Akrou L., da Silva H.J.A. Enhanced modal tracking for characteristic modes // IEEE Transactions on Antennas and Propagation. 2018. V. 67. № 1. P. 356–360.
  31. Li W., et al. Fast implementation of characteristic mode tracking // IET Microwaves, Antennas and Propagation. 2018. V. 12. № 14. P. 2179–2183.
  32. Masek M., et al. Modal tracking based on group theory // IEEE Transactions on Antennas and Propagation. 2020. V. 68. № 2. P. 927–937.
  33. Chen X.J., Pan Y.M., Su G.D. An advanced eigenvector-correlation-based tracking method for characteristic modes // IEEE Transactions on Antennas and Propagation. 2020. V. 69. № 5. P. 2751–2758.
  34. Xiao Z., et al. Mode tracking method based on information entropy // AIP Advances. 2022. V. 12. № 3. P. 035334.
  35. Yazdani-Shavakand M., Ahmadi-Shokouh J., Dashti H. A fast multi-structural tracking method for characteristic modes with the ability to identify and amend errors // IET Microwaves, Antennas and Propagation. 2023. V. 17. № 1. P. 62–74.
  36. Huang C., et al. An enhanced wideband tracking method for characteristic modes // International Journal of Microwave and Wireless Technologies. 2024. P. 1–11.
  37. Cabedo-Fabres M., et al. The theory of characteristic modes revisited: A contribution to the design of antennas for modern applications // IEEE Antennas and Propagation Magazine. 2007. V. 49. № 5. P. 52–68.
  38. Ylä-Oijala P. Generalized theory of characteristic modes // IEEE Transactions on Antennas and Propagation. 2019. V. 67. № 6. P. 3915–3923.
  39. Gustafsson M., et al. Unified theory of characteristic modes – part I: Fundamentals // IEEE Transactions on Antennas and Propagation. 2022. V. 70. № 12. P. 11801–11813.
  40. Gustafsson M., et al. Unified theory of characteristic modes – part II: Tracking, losses, and FEM evaluation // IEEE Transactions on Antennas and Propagation. 2022. V. 70. № 12. P. 11814–11824.
  41. Capek M., et al. Characteristic mode decomposition using the scattering dyadic in arbitrary full-wave solvers // IEEE Transactions on Antennas and Propagation. 2023. V. 71. № 1. P. 830–839.
  42. Kuosmanen M., et al. Orthogonality properties of characteristic modes for lossy structures // IEEE Transactions on Antennas and Propagation. 2022. V. 70. № 7. P. 5597–5605.
  43. Jia C., et al. Convergence acceleration of characteristic mode-based basis function method for connected array structures // IEEE Transactions on Antennas and Propagation. 2022. V. 70. № 8. P. 7322–7327.
  44. Chen Y., Wang C.F. HF band shipboard antenna design using characteristic modes // IEEE Transactions on Antennas and Propagation. 2015. V. 63. № 3. P. 1004–1013.
  45. Wang C., Chen Y., Yang S. Application of characteristic mode theory in HF band aircraft-integrated multi-antenna system designs // IEEE Transactions on Antennas and Propagation. 2019. V. 67. № 1. P. 513–521.
  46. Shih T.-Y., Behdad N. Bandwidth enhancement of platform-mounted HF antennas using the characteristic mode theory // IEEE Transactions on Antennas and Propagation. 2016. V. 64. № 7. P. 2648–2659.
  47. Chen Y., Wang C.F. Electrically small UAV antenna design using characteristic modes // IEEE Transactions on Antennas and Propagation. 2013. V. 62. № 2. P. 535–545.
  48. Schab K. Sparsity of radiating characteristic modes on infinite periodic structures // IEEE Antennas and Wireless Propagation Letters. 2021. V. 21. № 2. P. 312–316.
  49. Chen Y., Wang C.F. Synthesis of reactively controlled antenna arrays using characteristic modes and DE algorithm // IEEE Antennas and Wireless Propagation Letters. 2012. V. 11. P. 385–388.
  50. Wei C., Zhang Z.Y., Wu K.L. Phase compensation for decoupling of large-scale staggered dual-polarized dipole array antennas // IEEE Transactions on Antennas and Propagation. 2019. V. 68. № 4. P. 2822–2831.
  51. Zhang D., Chen Y., Yang S. A self-decoupling method for antenna arrays using high-order characteristic modes // IEEE Transactions on Antennas and Propagation. 2022. V. 70. № 3. P. 2760–2769.
  52. Li H., et al. Characteristic mode based tradeoff analysis of antenna-chassis interactions for multiple antenna terminals // IEEE Transactions on Antennas and Propagation. 2011. V. 60. № 2. P. 490–502.
  53. Miers Z.T., Lau B.K. Computational analysis and verifications of characteristic modes in real materials // IEEE Transactions on Antennas and Propagation. 2016. V. 64. № 7. P. 2595–2607.
  54. Zhang H.H., et al. Design of low-SAR and high on-body efficiency tri-band smartwatch antenna utilizing the theory of characteristic modes of composite PEC-lossy dielectric structures // IEEE Transactions on Antennas and Propagation. 2022. V. 71. № 2. P. 1913–1918.
  55. Huang S., Wang C.-F., Tang M.-C. Generalized surface integral equation based sub-structure characteristic mode solution to composite objects // IEEE Transactions on Antennas and Propagation. 2023. V. 71. № 3. P. 2626–2639.
  56. Miers Z., Li H., Lau B.K. Design of bandwidth-enhanced and multiband MIMO antennas using characteristic modes // IEEE Antennas and Wireless Propagation Letters. 2013. V. 12. P. 1696–1699.
  57. Kishor K.K., Hum S.V. A pattern reconfigurable chassis-mode MIMO antenna // IEEE Transactions on Antennas and Propagation. 2014. V. 62. № 6. P. 3290–3298.
  58. Li H., Miers Z.T., Lau B.K. Design of orthogonal MIMO handset antennas based on characteristic mode manipulation at frequency bands below 1 GHz // IEEE Transactions on Antennas and Propagation. 2014. V. 62. № 5. P. 2756–2766.
  59. Jabire A.H., et al. Characteristic mode analysis and design of wide band MIMO antenna consisting of metamaterial unit cell // Electronics. 2019. V. 8. № 1. P. 68.
  60. Mohanty A., Behera B.R. Characteristics mode analysis: A review of its concepts, recent trends, state-of-the-art developments and its interpretation with a fractal UWB MIMO antenna // Progress In Electromagnetics Research B. 2021. V. 92.
  61. Lin J.-F., Deng H., Zhu L. Design of low-profile compact MIMO antenna on a single radiating patch using simple and systematic characteristic modes method // IEEE Transactions on Antennas and Propagation. 2022. V. 70. № 3. P. 1612–1622.
  62. Zhang H.H., et al. Low-SAR MIMO antenna array design using characteristic modes for 5G mobile phones // IEEE Transactions on Antennas and Propagation. 2022. V. 70. № 4. P. 3052–3057.
  63. Hu W., et al. Wideband back-cover antenna design using dual characteristic modes with high isolation for 5G MIMO smartphone // IEEE Transactions on Antennas and Propagation. 2022. V. 70. № 7. P. 5254–5265.
  64. Jiang F., et al. Multiport pixel antenna optimization using characteristic mode analysis and sequential feeding port search // IEEE Transactions on Antennas and Propagation. 2022. V. 70. № 10. P. 9160–9174.
  65. Khaleel S.A., et al. MTM-inspired graphene-based THz MIMO antenna configurations using characteristic mode analysis for 6G/IoT applications // Electronics. 2022. V. 11. № 14. P. 2152.
  66. Lai Q.X., Pan Y.M., Zheng S.Y. A self-decoupling method for MIMO antenna array using characteristic mode of ground plane // IEEE Transactions on Antennas and Propagation. 2023. V. 71. № 3. P. 2126–2135.
  67. Manteuffel D., Martens R. Compact multimode multielement antenna for indoor UWB massive MIMO // IEEE Transactions on Antennas and Propagation. 2016. V. 64. № 7. P. 2689–2697.
  68. Li H., et al. Characteristic mode based pattern reconfigurable antenna for mobile handset // 2015 9th European Conference on Antennas and Propagation (EuCAP). Lisbon, Portugal. 2015. P. 1–4.
  69. Luo Y., et al. Efficiency improvement of smartphone antennas using higher-order mode suppression under characteristic mode analysis // IEEE Transactions on Antennas and Propagation. 2022. V. 70. № 11. P. 10304–10317.
  70. Li K., Shi Y. Filtering antenna synthesis based on characteristic mode theory // IEEE Transactions on Antennas and Propagation. 2022. V. 70. № 5. P. 3308–3319.
  71. Obeidat K.A., Raines B.D., Rojas R.G. Application of characteristic modes and non-foster multiport loading to the design of broadband antennas // IEEE Transactions on Antennas and Propagation. 2009. V. 58. № 1. P. 203–207.
  72. Wu W., Zhang Y.P. Analysis of ultra-wideband printed planar quasi-monopole antennas using the theory of characteristic modes // IEEE Antennas and Propagation Magazine. 2010. V. 52. № 6. P. 67–77.
  73. Obeidat K.A., et al. Design of frequency reconfigurable antennas using the theory of network characteristic modes // IEEE Transactions on Antennas and Propagation. 2010. V. 58. № 10. P. 3106–3113.
  74. Antonino-Daviu E., et al. Modal analysis and design of band-notched UWB planar monopole antennas // IEEE Transactions on Antennas and Propagation. 2010. V. 58. № 5. P. 1457–1467.
  75. Eichler J., et al. Design of a dual-band orthogonally polarized L-probe-fed fractal patch antenna using modal methods // IEEE Antennas and Wireless Propagation Letters. 2011. V. 10. P. 1389–1392.
  76. Adams J.J., Bernhard J.T. A modal approach to tuning and bandwidth enhancement of an electrically small antenna // IEEE Transactions on Antennas and Propagation. 2011. V. 59. № 4. P. 1085–1092.
  77. Chen Y., Wang C.F. Characteristic-mode-based improvement of circularly polarized U-slot and E-shaped patch antennas // IEEE Antennas and Wireless Propagation Letters. 2012. V. 11. P. 1474–1477.
  78. Ludick D.J., Lezar E., Jakobus U. Characteristic mode analysis of arbitrary electromagnetic structures using FEKO // 2012 International Conference on Electromagnetics in Advanced Applications. Cape Town, South Africa. 2012. P. 208–211.
  79. Ethier J.L.T., McNamara D.A. Antenna shape synthesis without prior specification of the feedpoint locations // IEEE Transactions on Antennas and Propagation. 2014. V. 62. № 10. P. 4919–4934.
  80. Rezaiesarlak R., Manteghi M. Design of chipless RFID tags based on characteristic mode theory (CMT) // IEEE Transactions on Antennas and Propagation. 2014. V. 63. № 2. P. 711–718.
  81. Noguchi K., Rajagopalan H., Rahmat-Samii Y. Design of wideband/dual-band E-shaped patch antennas with the transmission line mode theory // IEEE Transactions on Antennas and Propagation. 2015. V. 64. № 4. P. 1183–1192.
  82. Zeng J., et al. Penta-mode ultrawideband circularly polarized stacked patch antennas using characteristic mode analysis // IEEE Transactions on Antennas and Propagation. 2022. V. 70. № 10. P. 9051–9060.
  83. Li H., et al. Pattern synthesis for lossy antennas based on N-port characteristic mode analysis // IEEE Transactions on Antennas and Propagation. 2023. V. 71. № 6. P. 4628–4639.
  84. Shariff B.G.P., et al. Characteristic mode analysis based highly flexible antenna for millimeter wave wireless applications // Journal of Infrared, Millimeter, and Terahertz Waves. 2024. V. 45. № 1. P. 1–26.
  85. Yang Y., et al. Multi-band circularly polarized antenna for WLAN and WiMAX applications based on characteristic mode theory // International Journal of Microwave and Wireless Technologies. 2024. P. 1–9.
  86. Lin F.H., Chen Z.N. Low-profile wideband metasurface antennas using characteristic mode analysis // IEEE Transactions on Antennas and Propagation. 2017. V. 65. № 4. P. 1706–1713.
  87. Salih A.A., Chen Z.N., Mouthaan K. Characteristic mode analysis and metasurface-based suppression of higher order modes of a 2×2 closely-spaced phased array // IEEE Transactions on Antennas and Propagation. 2017. V. 65. № 3. P. 1141–1150.
  88. Lin F.H., Chen Z.N. A method of suppressing higher order modes for improving radiation performance of metasurface multiport antennas using characteristic mode analysis // IEEE Transactions on Antennas and Propagation. 2018. V. 66. № 4. P. 1894–1902.
  89. Guo J., et al. Design of a circuit-free filtering metasurface antenna using characteristic mode analysis // IEEE Transactions on Antennas and Propagation. 2022. V. 70. № 12. P. 12322–12327.
  90. Gao J.F., Lin F.H. Modeling and analysis of wideband multilayer metasurface antenna array using characteristic-mode analysis // IEEE Transactions on Antennas and Propagation. 2023. V. 71. № 3. P. 2832–2836.
  91. El Yousfi A., et al. A broadband circularly polarized single-layer metasurface antenna using characteristic-mode analysis // IEEE Transactions on Antennas and Propagation. 2023. V. 71. № 4. P. 3114–3122.
  92. Capek M., Schab K. Computational aspects of characteristic mode decomposition: An overview // IEEE Antennas and Propagation Magazine. 2022. V. 64. № 2. P. 23–31.
  93. Adams J.J., et al. Antenna element design using characteristic mode analysis: Insights and research directions // IEEE Antennas and Propagation Magazine. 2022. V. 64. № 2. P. 32–40.
  94. Kollipara V., Peddakrishna S. Circularly polarized antennas using characteristic mode analysis: A review // Advances in Technology Innovation. 2022. V. 7. № 4. P. 242.
  95. Джалилов Б.О. Исследование и разработка электрически перестраиваемой антенны для мобильных устройств. Дисс. ... канд. физ.-мат. наук. Санкт-Петербург. 2017.
  96. Уваров А.В. Сверхширокополосные печатные ненаправленные интегральные антенны для устройств беспроводной радиосвязи. Дисс. … канд. физ.-мат. наук. Москва. 2021.
  97. Майоров А.Г. Решение внутренней задачи электродинамики для вибраторной антенны методом собственных функций и методом характеристических мод // XXVIII Российская научно-техническая конференция профессорско-преподавательского состава, научных сотрудников и аспирантов университета с приглашением ведущих ученых и специалистов родственных вузов и организаций. Самара. 2021. С. 97–98.
  98. Беличенко В.П. и др. Моделирование влияния встречных реактивных полей на диаграммные свойства антенных решеток // Актуальные проблемы радиофизики. 2019. С. 91–92.
  99. Бочарова Е.А., Серегин Г.М. Использование СМА-анализа применительно к моделированию многофункциональной антенной системы компактного датчика цели // Modern Science. 2022. № 5-2. С. 237–244.
  100. Беличенко В.П. и др. Плоская Ф-антенна // Техника радиосвязи. 2023. Т. 1. № 56. С. 54–63.
Дата поступления: 02.04.2024
Одобрена после рецензирования: 12.04.2024
Принята к публикации: 22.05.2024