350 руб
Журнал «Антенны» №1 за 2024 г.
Статья в номере:
Применение высокоимпедансных поверхностей для создания низкопрофильных антенн*
Тип статьи: научная статья
DOI: https://doi.org/10.18127/j03209601-202401-02
УДК: 621.396.677
Авторы:

Д. Д. Габриэльян, М. Ю. Звездина, Г. П. Синявский

Аннотация:

Рассмотрены основные свойства высокоимпедансных поверхностей (структур Зивенпипера) применительно к решению задачи построения низкопрофильных и миниатюрных антенн. Дан анализ влияния геометрических и электрических параметров конструкции на характеристики направленности и согласования антенн.

Страницы: 6-25
Список источников
  1. Каценеленбаум Б.З. Высокочастотная электродинамика. – М.: Наука, 1966.
  2. Вайнштейн Л.А. Электронные волны в периодических структурах. – ЖТФ, 1957, т.27, №10, с.2340-2352.
  3. Вайнштейн Л.А. Электромагнитные волны. – М.: Радио и связь, 1988.
  4. Elliot, R., On the Theory of Corrugated Plane Surfaces, IRE Trans. Antennas Propag., 1954, vol.2, no.4, pp.71-81.
  5. Lee, S. and Jones, W., Surface Waves on Two-Dimensional Corrugated Surfaces, Radio Sci., 1971, vol.6, pp. 811-818.
  6. Kildal, P.-S. Artificially Soft and Hard Surfaces in Electromagnetics, IEEE Trans. Antennas Propag., 1990, vol.38, no.10, pp.1537-1544.
  7. Sievenpiper, D., High-Impedance Electromagnetic Surfaces. – Ph.D. dissertation, Univ. California at Los Angeles, 1999.
  8. Sievenpiper, D., et al., High-Impedance Electromagnetic Surfaces with a Forbidden Frequency Band. – IEEE Trans. Microwave Theory Tech., 1999, vol.47, no.11, pp.2059-2074.
  9. Семенов Н.А. Техническая электродинамика. М.: Связь, 1973.
  10. Устройства СВЧ и антенны. Проектирование фазированных антенных решеток / Под ред. Д.И. Воскресенского. – М.: Радиотехника, 2003.
  11. Coccioli, R., et al. Aperture-Coupled Patch Antenna on UC-PBC Substrate. – IEEE Trans. Microwave Theory Tech., 1999, vol.47, no.11, pp.2123-2130.
  12. Colburn, J.S. and Rahmat-Samii, Y. Patch Antennas on Externally Perforated High Dielectric Constant Substrates. – IEEE Trans. Antennas and Propag., 1999, vol.47, no. 12, pp.1785-1794.
  13. Li, Z. and Rahmat-Samii, Y. PBG, PMC and PEC Surfaces for Antenna Applications: A Comparative Study. IEEE Proc. AP-S Int. Symp. Dig., Jul.2000, pp.674-677.
  14. Broas, R.F.J., Sievenpiper, D. and Yablonovich, E. A High-Impedance Ground Plane Applied to a Cell-Phone Handset Geometry. – IEEE Trans. Microwave Theory Tech., 2001, vol.49, no.7, pp.1262-1265.
  15. Sievenpiper, D., et al. Electronic beam steering using a varactor tuned impedance surfaces, IEEE Proc. AP-S Dig., vol.1, July 2001, pp.174-177.
  16. Clavijo, S., Diaz, R.E. and McKinzie, W.E. Design Methodology for Sievenpiper High-Impedance Surfaces: An Artificial Magnetic Conductor for Positive Gain Electrically Small Antennas. – IEEE Trans. Antennas and Propag., 2003, vol.51, no. 10, pp.2678-2690.
  17. Yang, F. and Rahmat-Samii, Y. Reflection Phase Characterizations of the EBG Ground Plane for Low Profile Wire Antenna Applications. – IEEE Trans. Antennas and Propag., 2003, vol.51, no. 10, pp.2691-2703.
  18. Datta, S,. et al. Effective Dielectric Constant of Periodic Composite Structures, Phys. Rev. B., 1993, vol.48, no.20, pp.14936-14943.
  19. Mosallaei, H. and Sarabandi, K. Magneto-Dielectrics in Electromagnetics: Concept and Applications. – IEEE Trans. Antennas and Propag., 2004, vol.52, no. 6, pp.1558-1567.
  20. Abedin, M.F. and Ali, M. Effects of EBG Reflections Phase Profiles on the Input Impedance and Bandwidth of Ultrathin Directional Dipoles. – IEEE Trans. Antennas and Propag., 2005, vol.53, no. 11, pp.3664-3672.
  21. Feresidis, A.P., et al. Artificial Magnetic Conductor Surfaces and Their Application to Low-Profile High-Gain Planar Antennas. – IEEE Trans. Antennas and Propag., 2005, vol.53, no. 1, pp.209-215.
  22. Broas, R.F.J., Sievenpiper, D. and Yablonovitch, E. An Application of High-Impedance Ground Planes to Phased Array Antennas. – IEEE Trans. On Antennas and Propag., 2005, vol.53, no.4, pp.1377-1381.
  23. Erentok, A., Luljak, P. and Ziolkowski, R.W. Characterization of a Volumetric Metamaterial Realization of an Artificial Magnetic Conductor for Antenna Applications. – IEEE Trans. On Antennas and Propag., 2005, vol.53, no. 1, pp.160-172.
  24. Kern, D.J., et al. The Design Synthesis of Multiband Artificial Magnetic Conductors Using High-Impedance Frequency Selective Surfaces. – IEEE Trans. Antennas and Propag., 2005, vol.53, no. 1, pp.8-17.
  25. Barnes, W., et al. Physical Origin of Photonic Energy Gaps in the Propagation of Surface Plasmas on Gratings, Phys. Rev. B. Condens. Matter, 1996, vol.54, pp.6227-6244.
  26. Kitson, S., Barnes, W., and Sambles, J. Full Photonic Band Gap for Surface Modes in Visible, Phys. Rev. Lett., 1996, vol.77, pp.2670-2673.
  27. Joanpoulos, J.D., Meade, R.D., and Winn, J.N. Photonic Crystals. – Princeton, NJ: Princeton Univ. Press, 1995.
  28. Yang, H.D., Alexopolous, N., and Yablonovich, E. Photonic Band-Gap Materials for High-Gain Printed Circuit Antennas, IEEE Trans. Antennas and Propag., 1997, vol.45, no. 1, pp.185-187.
  29. Park, Y.J., Herschlein, A., and Wiebeck, P.H. A Photonic Band-Gap (PBG) Structure for Guiding and Suppressing Surface Waves in Millimeter-Wave Antennas. – IEEE Trans. Microwave Theory Tech., 2001, vol.49, no.10, pp.1854-1859.
  30. Veselago, V.G. The Electrodynamics of Substances with Simultaneously Negative Values of ε and μ. – Soviet Physics Uspekhi, 1968, vol.10, no.4, pp.509-514.
  31. Smith, D.R., et al., Composite Medium with Simultaneously Negative Permittivity and Permeability. – Phys. Rev. Lett., 2000, vol.78, no.18, pp.4184-4187.
  32. Pendry, J.B. Negative refraction makes a perfect lens. – Phys. Rev. Lett., 2000, vol.85, no.18, pp.3966-3969.
  33. Shelby, R.A., Smith, D.R., and Schultz, S. Experimental Verification of a Negative Refraction Index of Refraction, Science, 2002, vol.292, no.4, pp.77-79.
  34. Кисель В.Н., Лагарьков А.Н. Рассеяние электромагнитной волны на телах из материалов с отрицательным показателем преломления. – Электромагнитные поля и электронные системы, 2002, т.7, №7, c.62-65.
  35. Kipple, A.D. and Ziolkowski, R.W. Application of Double Negative Materials to Increase the Power Radiated by Electrically Small Antennas. – IEEE Trans. on Antennas and Propag., 2003, vol.51, no.10, pp. 2626-2640.
  36. Овсянников В.В. Вибраторные антенны с реактивными нагрузками. – М.: Радио и связь, 1985.
  37. Söndergraard, T., et al. Suppression of Spontaneous Emission for a Two-Dimensional Honey-Comb Photonic Bandgap Structure Estimated Using a New Effective-Index Model, IEEE J. Quantum Electron., 1998, vol.34, Dec., pp.2308-2313.
  38. King, R.J., Thil, D.V., and Park, K.S. The Synthesis of Surface Reactances Using an Artificial Dielectric. – IEEE Trans. Antennas and Propag., 1983, vol.31, no.5, pp.471-476.
  39. Габриэльян Д.Д., Звездина М.Ю., Синявский Г.П. Задачи дифракции для поверхностей с радиопоглощающими покрытиями (обзор). ‑ Успехи современной радиоэлектроники, 2005, № 12, с.3-15.

 

Дата поступления: 20 июля 2006 г.