350 руб
Журнал «Антенны» №9 за 2018 г.
Статья в номере:
Метод интегральных уравнений для решения внутренних задач дифракции электромагнитных волн
Тип статьи: научная статья
DOI: 10.18127/j03209601-201809-05
УДК: 621.372.831
Авторы:

И. Н. Данилов – к.т.н., ст. науч. сотрудник, филиал ФГУП «Российский федеральный ядерный центр – Всероссийский научно-исследовательский институт экспериментальной физики» «Научно-исследовательский институт измерительных систем им. Ю.Е. Седакова» (г. Нижний Новгород) E-mail: danilovn@yandex.ru

В. К. Майстренко – к.т.н., доцент, кафедра «Физика и техника оптической связи», Нижегородский государственный технический университет им. Р.Е. Алексеева

Н. А. Новоселова – к.т.н., доцент, кафедра «Физика и техника оптической связи», Нижегородский государственный технический университет им. Р.Е. Алексеева

С. Б. Раевский – Засл. деятель науки РФ, д.т.н., профессор, кафедра

Аннотация:

Предложен метод решения внутренних задач дифракции электромагнитных волн на нерегулярных участках экранированных волноводов. Установлено, что метод позволяет производить расчет спектров волн волноводов, экранирующая поверхность которых описывается аналитической функцией продольной координаты, и что по своей сути он является методом интегральных уравнений, получаемых в чисто физической формулировке на основе интегральной записи леммы Лоренца. Отмечено, что достоинством метода является инвариантность полученных на его основе алгоритмов по отношению к месту расположения вспомогательных источников, что позволяет достаточно просто производить алгебраизацию интегральных уравнений, в частности, применять процедуру типа Галеркина. Действенность метода продемонстрирована на задаче о расчете характеристик передачи плавных переходов между двумя прямоугольными волноводами различных поперечных сечений.

Страницы: 26-39
Список источников
  1. Иларионов Ю.А., Раевский С.Б., Сморгонский В.Я. Расчет гофрированных и частично заполненных волноводов. М.: Сов. радио. 1980.
  2. Укетин Э.Ф., Трошин Г.И., Худякова В.А. Гибкие эллиптические волноводы – новые фидерные линии в сантиметровом диапазоне волн // Антенны. М.: Связь. 1968. № 4. С. 16–30.
  3. Белов Ю.Г., Раевский С.Б. Дисперсионное уравнение эллиптического волновода с синусоидальной гофрой // Изв. ВУЗов СССР. Сер. Радиофизика. 1975. Т. 18. № 11. С. 98–101.
  4. Белов Ю.Г. Расчет критических частот и фазовой постоянной в эллиптическом волноводе с синусоидальной гофрой // Изв. ВУЗов СССР. Сер. Радиоэлектроника. 1977. Т. 20. № 2. С. 114–118.
  5. Короза В.И. Метод Ритца – Канторовича при исследовании распространения волн в нерегулярных электромагнитных волноводах // Ускорители. М.: МИФИ. 1969. Вып. 11. С. 88–92.
  6. Малин В.В. К вопросу о полосах пропускания в периодических волноводах // Радиотехника и электроника. 1962. Т. 7. № 8. С. 1349–1354.
  7. Каценеленбаум Б.З. Теория нерегулярных волноводов с медленно меняющимися параметрами. М.: АН СССР. 1961.
  8. Никольский В.В. Проекционные методы в электродинамике // Сб. научно-методических статей по прикладной электродинамике. М.: Высшая школа. 1977. Вып. 1. С. 4–50.
  9. Никольский В.В. Вариационные методы для внутренних задач электродинамики. М.: Наука. 1967.
  10. Иларионов Ю.А., Раевский А.С., Раевский С.Б., Седаков А.Ю. Устройства СВЧ- и КВЧ-диапазонов. М.: Радиотехника. 2013.
  11. Никольский В.В., Орлов В.П. и др. Автоматизированное проектирование устройств СВЧ / Под ред. В.В. Никольского. М.: Радио и связь. 1982.
  12. Веселов Г.И., Егоров Е.Н. и др. Микроэлектронные устройства СВЧ. Учеб. пособие для радиотехнических специальностей вузов / Под ред. Г.И. Веселова. М.: Высшая школа. 1988.
  13. Свешников А.Г. Нерегулярные волноводы // Изв. ВУЗов СССР. Сер. Радиофизика. 1959. Т. 2. № 5. С. 720–723.
  14. Свешников А.Г. К обоснованию метода расчета распространения электромагнитных колебаний в нерегулярных волноводах // ЖВМ и МФ. 1963. Т. 3. № 2. С. 314–373.
  15. Ильинский А.С., Свешников А.Г. Методы исследования нерегулярных волноводов // ЖВМ и МФ. 1968. Т. 8. № 2. С. 363–373.
  16. Ильинский А.С., Свешников А.Г. Прямые методы исследования волноводных систем // Вычислительные методы и программирование. М.: Изд-во МГУ. 1969. Вып. 13. С. 3–11.
  17. Вайнштейн Л.А. Электромагнитные волны. М.: Радио и связь. 1988.
  18. Марков Г.Т., Петров Б.М., Грудинская Г.П. Электродинамика и распространение радиоволн. Учеб. пособие для вузов. М.: Сов. радио. 1979.
Дата поступления: 20 августа 2018 г.