350 руб
Журнал «Антенны» №8 за 2010 г.
Статья в номере:
Теоретическое исследование частотных характеристик и температурного дрейфа мощных квантоворазмерных гетеролазеров с λ=0,85 - 1,05 мкм при непосредственной СВЧ-модуляции
Авторы:
Д. Ф. Зайцев - д.т.н., ст. научн. сотр. кафедры ТООЭ МИРЭА. E-mail zaysev@yandex.ru
Аннотация:
Приведены результаты теоретического исследования температурного дрейфа фазовых и частотных характеристик, а также временной задержки непрерывных и импульсных сигналов в мощных квантоворазмерных InGaAs-гетеролазерах при непосредственной СВЧ-модуляции. Впервые разработанный аналитический аппарат учитывает особенности работы мощных квантоворазмерных лазеров в статическом и динамическом режимах и позволяет рассчитывать температурный дрейф и задержку СВЧ-модулирующих сигналов с достаточной для инженерных расчетов точностью.
Страницы: 25-38
Список источников
  1. Бахрах Л. Д., Зайцев Д. Ф. Фазированные антенные решетки на основе распределенных оптических антенных модулей // Докл. АН. 2004. Т. 394. № 4. С. 465 - 468.
  2. Патент России № 2298810. Приемно-передающий оптоэлектронный модуль АФАР / Зайцев Д. Ф. 2005.
  3. Pappert S. ULTRA - T/R, Novel Photonic T/R Module, Description // DARPA. 2004.
  4. Goutzoulis, A., Zomp, J., An Eight - element Optically Powered, Directly Modulated Receive UНF Fiber- Optic Manifold // Microwave Journal. 1996. V. 39. № 2. P. 74 - 86.
  5. Shadaram, M. Medrano, J., Pappert, S. A., Berry, M. H., and Gookin, D. M., Technique for the phase of the reference signals in analog fiber - optic links // Applied Optics. 1995.
    V. 34. No. 36. P. 8283 - 8288.
  6. Grimes, G., Remoting antennas with high speed analog fiber optics // MSN. 1989. V. 19. P. 41-47.
  7. Zaitsev, D. F., Temperature drift of modulation characteristics In semiconductor lasers // IEE Proceedings J. 1993. V. 140. No. 4. P. 227 - 231.
  8. Зайцев Д. Ф. Исследование температурного дрейфа фазочастотных характеристик гетеролазеров при непосредственной СВЧ-модуляции // Антенны. 2003. Вып. 12. С. 33 - 38.
  9. Zaitsev, D. F., Temperature drift of modulation characteristics in semiconductor lasers // Modelling, Measurement & Control. 1993. AMSE Press. A. V. 51, No. 4 P. 53 - 64.
  10. Полупроводниковые инжекционные лазеры. Динамика, модуляция, спектры / под. ред. У. Тсанга: Пер. с англ. / под. ред. Л. А. Ривлина. М.: Радиоисвязь. 1990.
  11. Bowers, J. E., High speed semiconductor laser design and perfomance. // Solid-state electronics. 1987. V. 30. No. 1. P. 1-11.
  12. Shtengel, G. E., Belenky, G. L., Hybertsen, M. S., Kazarinov, R. F., and Ackerman, D. A., Advanced in measurements of physical parameters of semiconductor lasers // Journ. High Speed Electron. and Syst. 1999. V. 9. P. 901-940.
  13. Vasilev, P. P., White, I. H., Gowar, J., Fast phenomena in semiconductor lasers // Rep. Prog. Phys. 2000. V. 63. P. 1997-2042.
  14. Keating, T., Jin, X., Chuang, S. L., andHess, K., Temperature Dependence of Electrical and Optical Modulation Responses of Quantum-Well Lasers // IEEE Jorn. of Quant. Electron. 1999. V. 35. No. 10. P. 1526-1534.
  15. Piprek, J., Bowers, J. E., Analog modulation of semiconductor lasers / RF Photonic Technology in Optical Fiber Links, Edit. W. S.C. Chang. Cambridge Univ. Press. 2002.
  16. Nagarajan, R., Ishikawa, M., andBowers, J. E., High Speed Quantum-Well Lasers and Carrier Transport Effects // IEEE Jorn. of Quant. Electron., 1992. V. 28. No. 10. P. 1900-2007.
  17. Алферов Ж. И., Андреев В. М., Румянцев В. Д. Тенденции и перспективы развития солнечной фотоэнергетики // Физика и техника полупроводников. 2004. Т. 38. Вып. 8. С. 937 - 947.
  18. Pikhtin, N. A., Slipchenko, S. O., Sokolova, A Z., Stankevich, A. L., Vinokurov, D. A., Tarasov, I. S., Alferov, Zh. I.,16W continuous-wave output power from 100 μm-aperture laser with quantum well asymmetric heterostructure // Electronics letters. 2004. V. 40. No. 22. P. 1413-1414.
  19. Ладугин М. А., Зверков М. В., Коняев В. П., Кричевский В. В., Мармалюк А. А., Падалица А. А., Симаков В. А., Сухарев А. В.1 кВт импульсные лазерные излучатели на основе эпитаксиально-интегрированных наноструктур // Тезисы докл. молодых ученых 2-го Международного форума по нанотехнологиям. Москва. 6-8 октября. 2009. С. 1-3.
  20. Hülsewede, R.,Schulze, H., Sebastian, J., Schröder, D., Meusel, J., Wolf, J., and Hennig, P.,Optimized high-power diode laser, laser arrays, and bars for pump applications // Proceedings of the SPIE. 2009. V. 7198. P. 71980A-71980A-8.
  21. Piprek, J., Abraham, P., and Bowers, J., E. Carrier nonuniformity effects on the internal efficiency of multiquantum-well lasers // Appl. Phys. Letters. 1999. V. 74. No. 4. P. 489-491.
  22. Hjelme, D. R. andMickelson, A. R., Gain Nonlinearities Due to Carrier Density Dependent Dispersion in Semiconductor Lasers // IEEE Jorn. of Quant. Electron. 1989. V. 25. No. 7. P. 1625-1631.
  23. Czotscher, K., Weisser, S., Larkins, E. C., Fleissner, J., Ralston, J. D., Schönfelder, A., and Rosenzweiget, J., Structural and carrier density dependence of carrier lifetime in InGaAs/GaAs multiple-quantum-well lasers // Appl. Phys. Letters. 1996. V. 69. No. 21. P. 3058-3060.
  24. Lim, J., Sujecki, S., Larkins, E., Characterisation of high-speed InGaAs MQW lasers using an accurate dynamic laser simulation tool // Proceed. European Semicond. Laser Workshop. 2005. Sept. 23-24. P. 1-15.
  25. Garbuzov, D., Maiorov, M., Menna, R., Komissarov, A., Khalfin, V., Kudryashov, I., Lunev, A., DiMarco, L., Connolly, J.,High Power 1300 nm Fabry-Perot and DFB Ridge Waveguide Lasers // Proceedings of SPIE. 2002. V. 4651. http://www.citeseerx.ist.psu.edu/viewdoc/download-doi=10.1.1.128.6003 
  26. Piprek, J., White, J. K., andThorpe, A. J. S., What Limits the Maximum Output Power of Long-Wavelength AlGaInAs/InP Laser Diodes - // IEEE Jorn. of Quant. Electron. 2000. V. 36. No. 3. P. 366-374.
  27. Ohkubo, M.,Iwai, N., Ijichi,T. andNinomiya, T., Very Weak Dependence on Temperature of 980-nm InGaAs/InGaAsP/InGaP Lasers // Jpn. J. Appl. Phys. 1994. V. 33. P. L1307-L1309.
  28. Chen, T. R., Zhao, B., Eng, L., Zhuang, Y. H.,O-Brien, J., and Yariv, A., Very high modulation efficiency of ultralow threshold current single quantum well InGaAs lasers // Electronics letters. 1993. V. 29. No 17. P. 11525-1526.
  29. Choe, J.-S., Kim, K., Park, S., Kim, J. T., Lee, J.-M., Kim, M., Park, S. K., and Ju, J. J.,A spot-size converter-integrated 1.3 μm TM mode LD for coupling with surface-plasmon polariton waveguides // Semicond. Sci. Technol. 2010. V. 25. P. 1-5.
  30. Welker, H., Weiss, H., Optical Properties of III-V Compounds. V. 3 / Ed. R. K. Willardson, A. C. BEER. New-York: Academic Press. 1967.
  31. Jensen, B. and Torabi, A., Temperature and intensity dependense of the refractive index of a compoud semiconductor // J. Opt. Soc.Amer. B. 1985. V. 2. № 9. P. 1395 - 1401.
  32. Harder, C. S., High-Power Laser Diodes // LEOS Annual Meeting. 2006. No. 11 Montreal, November 1. P. 1-35.
  33. Hu, S. Y., Corzine, S. W., Chuang, Z. M., Law, K.-K., Young, D. B., Gossard, A. C., Colldren, L. A. and Merz, J. L., Temperature - dependent threshold and modulation caracteristics in InGaAs/GaAs quantum-well ridge-wavequide lasers // Appl. Phys. Lett., 1995.V. 66. P. 2040-2042.
  34. Nabiev, R. F., Vail, E. C., Chang-Hasnain, C. J., Temperature Dependent Efficiency and Modulation Characteristics of Al-Free 980-nm Laser Diodes // IEEE J. Select. Topics in Quantum Electron. 1995. V. 1. No. 2. P. 234 - 243.
  35. Tansu, N., Chang, Y-L., Takeuchi, T., Bour, D. P., Corzine, S. W., Tan, M. R. T., and Mawst, J. L.,Temperature Analysis and Characteristics of Highly Strained InGaAs-GaAsP-GaAs (λ>1.17μm) Quantum-Well Lasers // IEEE Jorn. of Quant. Electron., 2002. V. 38. No. 6. P. 640-651.
  36. Klotzkin, D. and Bhattacharya, P., Temperature Dependence of Dinamic and Dc Characteristics of Quantum-Well and Quantum-Dot Lasers: A Comparative Study // Journal of Lightwave Technology. 1999. V. 17. No. 9. P. 1634-1642.
  37. Dutta, N. K.,Wynn, J., Sivco, D. L., Cho, A. Y., Zydzik, G. J., Performance characteristics of InGaAs/GaAs multiquantum-well lasers // J.Appl. Physics. 1990. V.68. No. 8. Р. 3822-3825.