Р.В. Плотницкий1, Н.И. Абдуллина2, С.В. Пятницкая3, В.А. Солнцев4, В.А. Маркелов5, К.В. Данилко6
1–6 Институт фундаментальной медицины Башкирский государственный медицинский университет (г. Уфа, Россия)
1 plot.roma@yandex.ru, 2 abdullinanuri@gmail.com, 3 svpyatnickaya@bashgmu.ru, 4 vadim.solncev@inbox.ru, 5 marckelow.vitalick2017@yandex.ru, 6 kse-danilko@yandex.ru
Постановка проблемы. Дефекты суставного хряща являются медико-социальной проблемой, которая характеризуется ростом заболеваемости и инвалидизации у лиц трудоспособного возраста. Существующие способы восстановления поражённых суставов недостаточно эффективны и не имеют долгосрочного эффекта. На современном этапе разрабатываются новые подходы в терапии, направленные на достижение стойкого клинического эффекта, снижение травматичности и сокращение периода реабилитации после вмешательства.
Цель работы – обзор публикаций за последние 10 лет с исследованиями материалов, используемых в восстановлении повреждений суставного хряща, а также анализ положительных и отрицательных сторон материалов и методик, применяемых в клинической практике.
Результаты. Литературный поиск в базах данных PubMed, Google Scholar позволил выявить 67 публикаций, описывающих различные материалы, используемые в восстановлении повреждений суставного хряща. Все материалы распределены по принципу подхода к их созданию: клеточный подход, подход с использованием синтетических полимеров, подход с использованием полимеров природного происхождения. Также выявлены публикации, в которых исследуются комбинации найденных материалов и обсуждаются их свойства.
Практическая значимость. Показано, что наибольший потенциал имеют именно комбинации различных природных и синтетических материалов и клеточных технологий – за счет компенсации негативных характеристик отдельных материалов. Рассмотренные подходы в лечении и используемые материалы, которые уже применяются в клинике, непрерывно совершенствуются для усиления регенераторного эффекта.
Плотницкий Р.В., Абдуллина Н.И., Пятницкая С.В., Солнцев В.А., Маркелов В.А., Данилко К.В. Регенеративные технологии для терапии дефектов суставного хряща: обзор литературы // Технологии живых систем. 2025. T. 22. № 3. С. 74-85. DOI: https://doi.org/10.18127/j20700997-202503-08
- Kloppenburg M., Berenbaum F. Osteoarthritis year in review 2019: epidemiology and therapy // Osteoarthritis and cartilage. 2020. V. 28(3). P. 242–248. DOI: 10.1016/J.JOCA.2020.01.002
- Daley E.L.H., Kuttig J., Stegemann J.P. Development of Modular, Dual-Perfused Osteochondral Constructs for Cartilage Repair // Tissue engineering Part C, Methods. 2019. V. 25(3). P. 127–136. DOI. P. 10.1089/TEN.TEC.2018.0356
- Новаков В.Б., Новакова О.Н., Сорокина И.Н. и др. Генетические маркеры остеоартроза коленного сустава у женщин Центрального Черноземья России // Научные результаты биомедицинских исследований. 2023. Т. 9(2). С. 191–205. DOI: 10.18413/2658-6533-2023-9-2-0-4
- Bianchi V.J., Lee A., Anderson J. et al. Redifferentiated Chondrocytes in Fibrin Gel for the Repair of Articular Cartilage Lesions // The American journal of sports medicine. 2019. V. 47(10). P. 2348–2359. DOI: 10.1177/0363546519857571
- McGivern S., Boutouil H., Al-Kharusi G. et al. Translational Application of 3D Bioprinting for Cartilage Tissue Engineering // Bioengineering (Basel, Switzerland). 2021. V. 8(10). DOI: 10.3390/BIOENGINEERING8100144
- Hunter D.J., Bierma-Zeinstra S. Osteoarthritis // Lancet (London, England). 2019. V. 393(10182). P. 1745–1759. DOI: 10.1016/S0140-6736(19)30417-9
- Wei W., Ma Y., Yao X. et al. Advanced hydrogels for the repair of cartilage defects and regeneration // Bioactive materials. 2020. V. 6(4). P. 998–1011. DOI: 10.1016/J.BIOACTMAT.2020.09.030
- Wu Y., Kennedy P., Bonazza N. et al. Three-Dimensional Bioprinting of Articular Cartilage: A Systematic Review // Cartilage. 2021. V. 12(1). P. 76–92. DOI: 10.1177/1947603518809410
- Jacobi M., Villa V., Magnussen R.A., Neyret P. MACI – a new era? // Sports medicine, arthroscopy, rehabilitation, therapy & technology : SMARTT. 2011. V. 3(1). DOI: 10.1186/1758-2555-3-10
- Benthien J.P., Behrens P. Nanofractured autologous matrix induced chondrogenesis (NAMIC©) – Further development of collagen membrane aided chondrogenesis combined with subchondral needling: A technical note // Knee. 2015. V. 22(5). P. 411–415. DOI: 10.1016/j.knee.2015.06.010
- Kwon H., Brown W.E., Lee C.A. et al. Surgical and tissue engineering strategies for articular cartilage and meniscus repair // Nature reviews Rheumatology. 2019. V. 15(9). P. 550–570. DOI: 10.1038/S41584-019-0255-1
- Smith L., Jakubiec A., Biant L., Tawy G. The biomechanical and functional outcomes of autologous chondrocyte implantation for articular cartilage defects of the knee: A systematic review // The Knee. 2023. V. 44. P. 31–42. DOI: 10.1016/J.KNEE.2023.07.004
- Carey J.L., Remmers A.E., Flanigan D.C. Use of MACI (Autologous Cultured Chondrocytes on Porcine Collagen Membrane) in the United States: Preliminary Experience // Orthopaedic journal of sports medicine. 2020. V. 8(8). DOI: 10.1177/2325967120941816
- Migliorini F., Vaishya R., Bell A. et al. Fixation of the Membrane during Matrix-Induced Autologous Chondrocyte Implantation in the Knee: A Systematic Review // Life (Basel, Switzerland). 2022. V. 12(11). DOI: 10.3390/LIFE12111718
- Lee Y.H.D., Suzer F., Thermann H. Autologous Matrix-Induced Chondrogenesis in the Knee: A Review // Cartilage. 2014. V. 5(3). P. 145–153. DOI: 10.1177/1947603514529445
- Mithoefer K., Mcadams T., Williams R.J. et al. Clinical efficacy of the microfracture technique for articular cartilage repair in the knee: an evidence-based systematic analysis // The American journal of sports medicine. 2009. V. 37(10). P. 2053–2063. DOI: 10.1177/0363546508328414
- Carluccio S., Martinelli D., Palamà M.E.F. et al. Progenitor Cells Activated by Platelet Lysate in Human Articular Cartilage as a Tool for Future Cartilage Engineering and Reparative Strategies // Cells. 2020. V. 9. P. 1052. DOI: 10.3390/CELLS9041052
- Jia L., Zhang P., Ci Z. et al. Acellular cartilage matrix biomimetic scaffold with immediate enrichment of autologous bone marrow mononuclear cells to repair articular cartilage defects // Materials today Bio. 2022. V. 15. DOI: 10.1016/J.MTBIO.2022.100310
- Gupta P.K., Das A.K., Chullikana A., Majumdar A.S. Mesenchymal stem cells for cartilage repair in osteoarthritis // Stem cell research & therapy. 2012. V. 3(4). DOI: 10.1186/SCRT116
- Wang M., Wu Y., Li G. et al. Articular cartilage repair biomaterials: strategies and applications // Materials today Bio. 2024. V. 24. DOI: 10.1016/J.MTBIO.2024.100948
- Yang Y., Wu Y., Yang D. et al. Secretive derived from hypoxia preconditioned mesenchymal stem cells promote cartilage regeneration and mitigate joint inflammation via extracellular vesicles // Bioactive materials. 2023. V. 27. P. 98–112. DOI: 10.1016/J.BIOACTMAT.2023.03.017
- Chen X., Li J., Wang E. et al. Dynamic compression combined with SOX-9 overexpression in rabbit adipose-derived mesenchymal stem cells cultured in a three-dimensional gradual porous PLGA composite scaffold upregulates HIF-1α expression // Journal of biomedical materials research Part A. 2015. V. 103(12). P. 3886–3895. DOI: 10.1002/JBM.A.35530
- Fernández-Pernas P., Barrachina L., Marquina M. et al. Mesenchymal stromal cells for articular cartilage repair: preclinical studies // European cells & materials. 2020. V. 40. P. 88–114. DOI: 10.22203/ECM.V040A06
- Yin H., Mao K., Huang Y. et al. Tendon stem/progenitor cells are promising reparative cell sources for multiple musculoskeletal injuries of concomitant articular cartilage lesions associated with ligament injuries // Journal of Orthopaedic Surgery and Research. 2023. V. 18(1). P. 1–10. DOI: 10.1186/S13018-023-04313-3/FIGURES/5
- Zhang P., Chen J., Sun Y. et al. A 3D multifunctional bi-layer scaffold to regulate stem cell behaviors and promote osteochondral regeneration // Journal of materials chemistry B. 2023. V. 11(6). P. 1240–1261. DOI: 10.1039/D2TB02203F
- Abatangelo G., Vindigni V., Avruscio G. et al. Hyaluronic Acid: Redefining Its Role // Cells. 2020. V. 9(7). P. 1–19. DOI: 10.3390/CELLS9071743
- Lu D., Zeng Z., Geng Z. et al. Macroporous methacrylated hyaluronic acid hydrogel with different pore sizes for in vitro and in vivo evaluation of vascularization // Biomedical materials (Bristol, England). 2022. V. 17(2). DOI: 10.1088/1748-605X/AC494B
- Wang M., Deng Z., Guo Y., Xu P. Designing functional hyaluronic acid-based hydrogels for cartilage tissue engineering // Materials today Bio. 2022. V. 17. DOI: 10.1016/J.MTBIO.2022.100495
- Sun X., Song W., Teng L. et al. MiRNA 24-3p-rich exosomes functionalized DEGMA-modified hyaluronic acid hydrogels for corneal epithelial healing // Bioactive materials. 2022. V. 25. P. 640–656. DOI: 10.1016/J.BIOACTMAT.2022.07.011
- Lazarini M., Bordeaux-Rego P., Giardini-Rosa R. et al. Natural Type II Collagen Hydrogel, Fibrin Sealant, and Adipose-Derived Stem Cells as a Promising Combination for Articular Cartilage Repair // Cartilage. 2017. V. 8(4). P. 439–443. DOI: 10.1177/1947603516675914
- Parmar P.A., St-Pierre J.P., Chow L.W. et al. Enhanced articular cartilage by human mesenchymal stem cells in enzymatically mediated transiently RGDS-functionalized collagen-mimetic hydrogels // Acta biomaterialia. 2017. V. 51. P. 75–88. DOI: 10.1016/J.ACTBIO.2017.01.028
- Wong C.C., Chen C.H., Chiu L.H. et al. Facilitating In Vivo Articular Cartilage Repair by Tissue-Engineered Cartilage Grafts Produced From Auricular Chondrocytes // The American journal of sports medicine. 2018. V. 46(3). P. 713–727. DOI: 10.1177/0363546517741306
- Li H., Hu C., Yu H., Chen C. Chitosan composite scaffolds for articular cartilage defect repair: a review // RSC Advances. 2018. V. 8(7). P. 3736–3749. DOI: 10.1039/C7RA11593H
- Aranaz I., Alcántara A.R., Civera M.C. et al. Chitosan: An Overview of Its Properties and Applications // Polymers. 2021.
V. 13(19). DOI: 10.3390/POLYM13193256 - Kim D.Y., Park H., Kim S.W. et al. Injectable hydrogels prepared from partially oxidized hyaluronate and glycol chitosan for chondrocyte encapsulation // Carbohydrate polymers. 2017. V. 157. P. 1281–1287. DOI: 10.1016/J.CARBPOL.2016.11.002
- Yang Y., Wang X., Yang F. et al. A Universal Soaking Strategy to Convert Composite Hydrogels into Extremely Tough and Rapidly Recoverable Double-Network Hydrogels // Advanced Materials. 2016. V. 28(33). P. 7178–7184. DOI: 10.1002/ADMA.201601742
- Nazir F., Ashraf I., Iqbal M. et al. 6-deoxy-aminocellulose derivatives embedded soft gelatin methacryloyl (GelMA) hydrogels for improved wound healing applications: In vitro and in vivo studies // International Journal of Biological Macromolecules. 2021. V. 185. P. 419–433. DOI: 10.1016/J.IJBIOMAC.2021.06.112
- Guo A., Zhang S., Yang R., Sui C. Enhancing the mechanical strength of 3D printed GelMA for soft tissue engineering applications // Materials today Bio. 2023. V. 24. DOI: 10.1016/J.MTBIO.2023.100939
- Mikhailov O.V. Gelatin as It Is: History and Modernity // International journal of molecular sciences. 2023. V. 24(4). DOI: 10.3390/IJMS24043583
- Santoro M., Tatara A.M., Mikos A.G. Gelatin carriers for drug and cell delivery in tissue engineering // Journal of Controlled Release. 2014. V. 190. P. 210–218. DOI: 10.1016/J.JCONREL.2014.04.014
- Cong B., Sun T., Zhao Y., Chen M. Current and Novel Therapeutics for Articular Cartilage Repair and Regeneration // Therapeutics and clinical risk management. 2023. V. 19. P. 485–502. DOI: 10.2147/TCRM.S410277
- Макарова Э.Б., Корч М.А., Фадеев Ф.А. и др. Тестирование гидрогеля p-HEMA в качестве имплантационного материала для замещения костно-хрящевых дефектов у животных // Вестник трансплантологии и искусственных органов. 2022. Т. 24(2). С. 71–82. DOI: 10.15825/1995-1191-2022-2-71-82
- Zare M., Bigham A., Zare M. et al. pHEMA: An Overview for Biomedical Applications. International journal of molecular sciences. 2021. V. 22(12). DOI: 10.3390/IJMS22126376
- Shahrousvand M., Ghollasi M., Zarchi A.A.K., Salimi A. Osteogenic differentiation of hMSCs on semi-interpenetrating polymer networks of polyurethane/poly(2‑hydroxyethyl methacrylate)/cellulose nanowhisker scaffolds // International journal of biological macromolecules. 2019. V. 138. P. 262–271. DOI: 10.1016/J.IJBIOMAC.2019.07.080
- Mehrali M., Thakur A., Pennisi C.P. et al. Nanoreinforced Hydrogels for Tissue Engineering: Biomaterials that are Compatible with Load-Bearing and Electroactive Tissues // Advanced materials (Deerfield Beach, Fla). 2017. V. 29(8). DOI: 10.1002/ADMA.201603612
- Milner P.E., Parkes M., Puetzer J.L. et al. A low friction, biphasic and boundary lubricating hydrogel for cartilage replacement // Acta biomaterialia. 2018. V. 65. P. 102–111. DOI: 10.1016/J.ACTBIO.2017.11.002
- Cooper B.G., Stewart R.C., Burstein D. et al. A Tissue-Penetrating Double Network Restores the Mechanical Properties of Degenerated Articular Cartilage // Angewandte Chemie (International ed in English). 2016. V. 55(13). P. 4226–4230. DOI: 10.1002/ANIE.201511767
- Baker M.I., Walsh S.P., Schwartz Z., Boyan B.D. A review of polyvinyl alcohol and its uses in cartilage and orthopedic applications // Journal of biomedical materials research Part B, Applied biomaterials. 2012. V. 100(5). P. 1451–1457. DOI: 10.1002/JBM.B.32694
- Oliveira A.S., Seidi O., Ribeiro N. et al. Tribomechanical Comparison between PVA Hydrogels Obtained Using Different Processing Conditions and Human Cartilage // Materials (Basel, Switzerland). 2019. V. 12(20). DOI: 10.3390/MA12203413
- Sala R.L., Kwon M.Y., Kim M. et al. Thermosensitive Poly(N-vinylcaprolactam) Injectable Hydrogels for Cartilage Tissue Engineering // Tissue engineering Part A. 2017. V. 23(17-18). P. 935–945. DOI: 10.1089/TEN.TEA.2016.0464
- Lü J.M., Wang X., Marin-Muller C. et al. Current advances in research and clinical applications of PLGA-based nanotechnology // Expert review of molecular diagnostics. 2009. V. 9(4). P. 325–341. DOI: 10.1586/ERM.09.15
- Mozaffari A., Mirzapour S.M., Rad M.S., Ranjbaran M. Cytotoxicity of PLGA-zinc oxide nanocomposite on human gingival fibroblasts // Journal of advanced periodontology & implant dentistry. 2023. V. 15(1). P. 28–34. DOI: 10.34172/JAPID.2023.010
- Dong Z., Yuan Q., Huang K. et al. Gelatin methacryloyl (GelMA)-based biomaterials for bone regeneration // RSC advances. 2019. V. 9(31). P. 17737–17744. DOI: 10.1039/C9RA02695A
- Yue K., Trujillo-de Santiago G., Alvarez M.M. et al. Synthesis, properties, and biomedical applications of gelatin methacryloyl (GelMA) hydrogels // Biomaterials. 2015. V. 73. P. 254–271. DOI: 10.1016/J.BIOMATERIALS.2015.08.045
- Wang Y., Koole L.H., Gao C. et al. The potential utility of hybrid photo-crosslinked hydrogels with non-immunogenic component for cartilage repair // NPJ Regenerative medicine. 2021. V. 6(1). DOI: 10.1038/S41536-021-00166-8
- Mouser V.H.M., Abbadessa A., Levato R. et al. Development of a thermosensitive HAMA-containing bio-ink for the fabrication of composite cartilage repair constructs // Biofabrication. 2017. V. 9(1). DOI: 10.1088/1758-5090/AA6265
- Feng Q., Lin S., Zhang K. et al. Sulfated hyaluronic acid hydrogels with retarded degradation and enhanced growth factor retention promote hMSC chondrogenesis and articular cartilage integrity with reduced hypertrophy // Acta biomaterialia. 2017. V. 53. P. 329–342. DOI: 10.1016/J.ACTBIO.2017.02.015
- Martyniak K., Lokshina A., Cruz M.A. et al. Biomaterial composition and stiffness as decisive properties of 3D bioprinted constructs for type II collagen stimulation // Acta biomaterialia. 2022. V. 152. P. 221–234. DOI: 10.1016/J.ACTBIO.2022.08.058
- Wang G., An Y., Zhang X. et al. Chondrocyte Spheroids Laden in GelMA/HAMA Hybrid Hydrogel for Tissue-Engineered Cartilage with Enhanced Proliferation, Better Phenotype Maintenance, and Natural Morphological Structure // Gels (Basel, Switzerland). 2021. V. 7(4). DOI: 10.3390/GELS7040247
- Zhao Y., Zhao X., Zhang R. et al. Cartilage Extracellular Matrix Scaffold With Kartogenin-Encapsulated PLGA Microspheres for Cartilage Regeneration // Frontiers in bioengineering and biotechnology. 2020. V. 8. DOI:10.3389/FBIOE.2020.600103
- Park H., Choi B., Hu J., Lee M. Injectable chitosan hyaluronic acid hydrogels for cartilage tissue engineering // Acta biomaterialia. 2013. V. 9(1). P. 4779–4786. DOI: 10.1016/J.ACTBIO.2012.08.033
- Farsi M., Asefnejad A., Baharifar H. A hyaluronic acid/PVA electrospun coating on 3D printed PLA scaffold for orthopedic application // Progress in biomaterials. 2022. V. 11(1). P. 67–77. DOI: 10.1007/S40204-022-00180-Z
- Stockinger B., Shah K., Wincent E. AHR in the intestinal microenvironment: safeguarding barrier function // Nature reviews Gastroenterology & hepatology. 2021. V. 18(8). P. 559–570. DOI: 10.1038/S41575-021-00430-8
- Kim H.S., Mandakhbayar N., Kim H.W. et al. Protein-reactive nanofibrils decorated with cartilage-derived decellularized extracellular matrix for osteochondral defects // Biomaterials. 2021. V. 269. DOI: 10.1016/J.BIOMATERIALS.2020.120214
- Hsieh C.F., Chen C.H., Kao H.H. et al. PLGA/Gelatin/Hyaluronic Acid Fibrous Membrane Scaffold for Therapeutic Delivery of Adipose-Derived Stem Cells to Promote Wound Healing // Biomedicines. 2022. V. 10(11). DOI: 10.3390/BIOMEDICINES 10112902
- Wasyłeczko M., Sikorska W., Chwojnowski A. Review of Synthetic and Hybrid Scaffolds in Cartilage Tissue Engineering // Membranes. 2020. V. 10(11). P. 1–28. DOI: 10.3390/MEMBRANES10110348
- Liu F., Li W., Liu H. et al. Preparation of 3D Printed Chitosan/Polyvinyl Alcohol Double Network Hydrogel Scaffolds // Macromolecular bioscience. 2021. V. 21(4). DOI: 10.1002/MABI.202000398

