350 руб
Журнал «Технологии живых систем» №3 за 2025 г.
Статья в номере:
Регенеративные технологии для терапии дефектов суставного хряща: обзор литературы
Тип статьи: обзорная статья
DOI: https://doi.org/10.18127/j20700997-202503-08
УДК: 591.169.2
Авторы:

Р.В. Плотницкий1, Н.И. Абдуллина2, С.В. Пятницкая3, В.А. Солнцев4, В.А. Маркелов5, К.В. Данилко6

1–6 Институт фундаментальной медицины Башкирский государственный медицинский университет (г. Уфа, Россия)

1 plot.roma@yandex.ru, 2 abdullinanuri@gmail.com, 3 svpyatnickaya@bashgmu.ru, 4 vadim.solncev@inbox.ru, 5 marckelow.vitalick2017@yandex.ru, 6 kse-danilko@yandex.ru

Аннотация:

Постановка проблемы. Дефекты суставного хряща являются медико-социальной проблемой, которая характеризуется ростом заболеваемости и инвалидизации у лиц трудоспособного возраста. Существующие способы восстановления поражённых суставов недостаточно эффективны и не имеют долгосрочного эффекта. На современном этапе разрабатываются новые подходы в терапии, направленные на достижение стойкого клинического эффекта, снижение травматичности и сокращение периода реабилитации после вмешательства.

Цель работы – обзор публикаций за последние 10 лет с исследованиями материалов, используемых в восстановлении повреждений суставного хряща, а также анализ положительных и отрицательных сторон материалов и методик, применяемых в клинической практике.

Результаты. Литературный поиск в базах данных PubMed, Google Scholar позволил выявить 67 публикаций, описывающих различные материалы, используемые в восстановлении повреждений суставного хряща. Все материалы распределены по принципу подхода к их созданию: клеточный подход, подход с использованием синтетических полимеров, подход с использованием полимеров природного происхождения. Также выявлены публикации, в которых исследуются комбинации найденных материалов и обсуждаются их свойства.

Практическая значимость. Показано, что наибольший потенциал имеют именно комбинации различных природных и синтетических материалов и клеточных технологий – за счет компенсации негативных характеристик отдельных материалов. Рассмотренные подходы в лечении и используемые материалы, которые уже применяются в клинике, непрерывно совершенствуются для усиления регенераторного эффекта.

Страницы: 74-85
Для цитирования

Плотницкий Р.В., Абдуллина Н.И., Пятницкая С.В., Солнцев В.А., Маркелов В.А., Данилко К.В. Регенеративные технологии для терапии дефектов суставного хряща: обзор литературы // Технологии живых систем. 2025. T. 22. № 3. С. 74-85. DOI: https://doi.org/10.18127/j20700997-202503-08

Список источников
  1. Kloppenburg M., Berenbaum F. Osteoarthritis year in review 2019: epidemiology and therapy // Osteoarthritis and cartilage. 2020. V. 28(3). P. 242–248. DOI: 10.1016/J.JOCA.2020.01.002
  2. Daley E.L.H., Kuttig J., Stegemann J.P. Development of Modular, Dual-Perfused Osteochondral Constructs for Cartilage Repair // Tissue engineering Part C, Methods. 2019. V. 25(3). P. 127–136. DOI. P. 10.1089/TEN.TEC.2018.0356
  3. Новаков В.Б., Новакова О.Н., Сорокина И.Н. и др. Генетические маркеры остеоартроза коленного сустава у женщин Центрального Черноземья России // Научные результаты биомедицинских исследований. 2023. Т. 9(2). С. 191–205. DOI: 10.18413/2658-6533-2023-9-2-0-4
  4. Bianchi V.J., Lee A., Anderson J. et al. Redifferentiated Chondrocytes in Fibrin Gel for the Repair of Articular Cartilage Lesions // The American journal of sports medicine. 2019. V. 47(10). P. 2348–2359. DOI: 10.1177/0363546519857571
  5. McGivern S., Boutouil H., Al-Kharusi G. et al. Translational Application of 3D Bioprinting for Cartilage Tissue Engineering // Bioengineering (Basel, Switzerland). 2021. V. 8(10). DOI: 10.3390/BIOENGINEERING8100144
  6. Hunter D.J., Bierma-Zeinstra S. Osteoarthritis // Lancet (London, England). 2019. V. 393(10182). P. 1745–1759. DOI: 10.1016/S0140-6736(19)30417-9
  7. Wei W., Ma Y., Yao X. et al. Advanced hydrogels for the repair of cartilage defects and regeneration // Bioactive materials. 2020. V. 6(4). P. 998–1011. DOI: 10.1016/J.BIOACTMAT.2020.09.030
  8. Wu Y., Kennedy P., Bonazza N. et al. Three-Dimensional Bioprinting of Articular Cartilage: A Systematic Review // Cartilage. 2021. V. 12(1). P. 76–92. DOI: 10.1177/1947603518809410
  9. Jacobi M., Villa V., Magnussen R.A., Neyret P. MACI – a new era? // Sports medicine, arthroscopy, rehabilitation, therapy & technology : SMARTT. 2011. V. 3(1). DOI: 10.1186/1758-2555-3-10
  10. Benthien J.P., Behrens P. Nanofractured autologous matrix induced chondrogenesis (NAMIC©) – Further development of collagen membrane aided chondrogenesis combined with subchondral needling: A technical note // Knee. 2015. V. 22(5). P. 411–415. DOI: 10.1016/j.knee.2015.06.010
  11. Kwon H., Brown W.E., Lee C.A. et al. Surgical and tissue engineering strategies for articular cartilage and meniscus repair // Nature reviews Rheumatology. 2019. V. 15(9). P. 550–570. DOI: 10.1038/S41584-019-0255-1
  12. Smith L., Jakubiec A., Biant L., Tawy G. The biomechanical and functional outcomes of autologous chondrocyte implantation for articular cartilage defects of the knee: A systematic review // The Knee. 2023. V. 44. P. 31–42. DOI: 10.1016/J.KNEE.2023.07.004
  13. Carey J.L., Remmers A.E., Flanigan D.C. Use of MACI (Autologous Cultured Chondrocytes on Porcine Collagen Membrane) in the United States: Preliminary Experience // Orthopaedic journal of sports medicine. 2020. V. 8(8). DOI: 10.1177/2325967120941816
  14. Migliorini F., Vaishya R., Bell A. et al. Fixation of the Membrane during Matrix-Induced Autologous Chondrocyte Implantation in the Knee: A Systematic Review // Life (Basel, Switzerland). 2022. V. 12(11). DOI: 10.3390/LIFE12111718
  15. Lee Y.H.D., Suzer F., Thermann H. Autologous Matrix-Induced Chondrogenesis in the Knee: A Review // Cartilage. 2014. V. 5(3). P. 145–153. DOI: 10.1177/1947603514529445
  16. Mithoefer K., Mcadams T., Williams R.J. et al. Clinical efficacy of the microfracture technique for articular cartilage repair in the knee: an evidence-based systematic analysis // The American journal of sports medicine. 2009. V. 37(10). P. 2053–2063. DOI: 10.1177/0363546508328414
  17. Carluccio S., Martinelli D., Palamà M.E.F. et al. Progenitor Cells Activated by Platelet Lysate in Human Articular Cartilage as a Tool for Future Cartilage Engineering and Reparative Strategies // Cells. 2020. V. 9. P. 1052. DOI: 10.3390/CELLS9041052
  18. Jia L., Zhang P., Ci Z. et al. Acellular cartilage matrix biomimetic scaffold with immediate enrichment of autologous bone marrow mononuclear cells to repair articular cartilage defects // Materials today Bio. 2022. V. 15. DOI: 10.1016/J.MTBIO.2022.100310
  19. Gupta P.K., Das A.K., Chullikana A., Majumdar A.S. Mesenchymal stem cells for cartilage repair in osteoarthritis // Stem cell research & therapy. 2012. V. 3(4). DOI: 10.1186/SCRT116
  20. Wang M., Wu Y., Li G. et al. Articular cartilage repair biomaterials: strategies and applications // Materials today Bio. 2024. V. 24. DOI: 10.1016/J.MTBIO.2024.100948
  21. Yang Y., Wu Y., Yang D. et al. Secretive derived from hypoxia preconditioned mesenchymal stem cells promote cartilage regeneration and mitigate joint inflammation via extracellular vesicles // Bioactive materials. 2023. V. 27. P. 98–112. DOI: 10.1016/J.BIOACTMAT.2023.03.017
  22. Chen X., Li J., Wang E. et al. Dynamic compression combined with SOX-9 overexpression in rabbit adipose-derived mesenchymal stem cells cultured in a three-dimensional gradual porous PLGA composite scaffold upregulates HIF-1α expression // Journal of biomedical materials research Part A. 2015. V. 103(12). P. 3886–3895. DOI: 10.1002/JBM.A.35530
  23. Fernández-Pernas P., Barrachina L., Marquina M. et al. Mesenchymal stromal cells for articular cartilage repair: preclinical studies // European cells & materials. 2020. V. 40. P. 88–114. DOI: 10.22203/ECM.V040A06
  24. Yin H., Mao K., Huang Y. et al. Tendon stem/progenitor cells are promising reparative cell sources for multiple musculoskeletal injuries of concomitant articular cartilage lesions associated with ligament injuries // Journal of Orthopaedic Surgery and Research. 2023. V. 18(1). P. 1–10. DOI: 10.1186/S13018-023-04313-3/FIGURES/5
  25. Zhang P., Chen J., Sun Y. et al. A 3D multifunctional bi-layer scaffold to regulate stem cell behaviors and promote osteochondral regeneration // Journal of materials chemistry B. 2023. V. 11(6). P. 1240–1261. DOI: 10.1039/D2TB02203F
  26. Abatangelo G., Vindigni V., Avruscio G. et al. Hyaluronic Acid: Redefining Its Role // Cells. 2020. V. 9(7). P. 1–19. DOI: 10.3390/CELLS9071743
  27. Lu D., Zeng Z., Geng Z. et al. Macroporous methacrylated hyaluronic acid hydrogel with different pore sizes for in vitro and in vivo evaluation of vascularization // Biomedical materials (Bristol, England). 2022. V. 17(2). DOI: 10.1088/1748-605X/AC494B
  28. Wang M., Deng Z., Guo Y., Xu P. Designing functional hyaluronic acid-based hydrogels for cartilage tissue engineering // Materials today Bio. 2022. V. 17. DOI: 10.1016/J.MTBIO.2022.100495
  29. Sun X., Song W., Teng L. et al. MiRNA 24-3p-rich exosomes functionalized DEGMA-modified hyaluronic acid hydrogels for corneal epithelial healing // Bioactive materials. 2022. V. 25. P. 640–656. DOI: 10.1016/J.BIOACTMAT.2022.07.011
  30. Lazarini M., Bordeaux-Rego P., Giardini-Rosa R. et al. Natural Type II Collagen Hydrogel, Fibrin Sealant, and Adipose-Derived Stem Cells as a Promising Combination for Articular Cartilage Repair // Cartilage. 2017. V. 8(4). P. 439–443. DOI: 10.1177/1947603516675914
  31. Parmar P.A., St-Pierre J.P., Chow L.W. et al. Enhanced articular cartilage by human mesenchymal stem cells in enzymatically mediated transiently RGDS-functionalized collagen-mimetic hydrogels // Acta biomaterialia. 2017. V. 51. P. 75–88. DOI: 10.1016/J.ACTBIO.2017.01.028
  32. Wong C.C., Chen C.H., Chiu L.H. et al. Facilitating In Vivo Articular Cartilage Repair by Tissue-Engineered Cartilage Grafts Produced From Auricular Chondrocytes // The American journal of sports medicine. 2018. V. 46(3). P. 713–727. DOI: 10.1177/0363546517741306
  33. Li H., Hu C., Yu H., Chen C. Chitosan composite scaffolds for articular cartilage defect repair: a review // RSC Advances. 2018. V. 8(7). P. 3736–3749. DOI: 10.1039/C7RA11593H
  34. Aranaz I., Alcántara A.R., Civera M.C. et al. Chitosan: An Overview of Its Properties and Applications // Polymers. 2021.
    V. 13(19). DOI: 10.3390/POLYM13193256
  35. Kim D.Y., Park H., Kim S.W. et al. Injectable hydrogels prepared from partially oxidized hyaluronate and glycol chitosan for chondrocyte encapsulation // Carbohydrate polymers. 2017. V. 157. P. 1281–1287. DOI: 10.1016/J.CARBPOL.2016.11.002
  36. Yang Y., Wang X., Yang F. et al. A Universal Soaking Strategy to Convert Composite Hydrogels into Extremely Tough and Rapidly Recoverable Double-Network Hydrogels // Advanced Materials. 2016. V. 28(33). P. 7178–7184. DOI: 10.1002/ADMA.201601742
  37. Nazir F., Ashraf I., Iqbal M. et al. 6-deoxy-aminocellulose derivatives embedded soft gelatin methacryloyl (GelMA) hydrogels for improved wound healing applications: In vitro and in vivo studies // International Journal of Biological Macromolecules. 2021. V. 185. P. 419–433. DOI: 10.1016/J.IJBIOMAC.2021.06.112
  38. Guo A., Zhang S., Yang R., Sui C. Enhancing the mechanical strength of 3D printed GelMA for soft tissue engineering applications // Materials today Bio. 2023. V. 24. DOI: 10.1016/J.MTBIO.2023.100939
  39. Mikhailov O.V. Gelatin as It Is: History and Modernity // International journal of molecular sciences. 2023. V. 24(4). DOI: 10.3390/IJMS24043583
  40. Santoro M., Tatara A.M., Mikos A.G. Gelatin carriers for drug and cell delivery in tissue engineering // Journal of Controlled Release. 2014. V. 190. P. 210–218. DOI: 10.1016/J.JCONREL.2014.04.014
  41. Cong B., Sun T., Zhao Y., Chen M. Current and Novel Therapeutics for Articular Cartilage Repair and Regeneration // Therapeutics and clinical risk management. 2023. V. 19. P. 485–502. DOI: 10.2147/TCRM.S410277
  42. Макарова Э.Б., Корч М.А., Фадеев Ф.А. и др. Тестирование гидрогеля p-HEMA в качестве имплантационного материала для замещения костно-хрящевых дефектов у животных // Вестник трансплантологии и искусственных органов. 2022. Т. 24(2). С. 71–82. DOI: 10.15825/1995-1191-2022-2-71-82
  43. Zare M., Bigham A., Zare M. et al. pHEMA: An Overview for Biomedical Applications. International journal of molecular sciences. 2021. V. 22(12). DOI: 10.3390/IJMS22126376
  44. Shahrousvand M., Ghollasi M., Zarchi A.A.K., Salimi A. Osteogenic differentiation of hMSCs on semi-interpenetrating polymer networks of polyurethane/poly(2‑hydroxyethyl methacrylate)/cellulose nanowhisker scaffolds // International journal of biological macromolecules. 2019. V. 138. P. 262–271. DOI: 10.1016/J.IJBIOMAC.2019.07.080
  45. Mehrali M., Thakur A., Pennisi C.P. et al. Nanoreinforced Hydrogels for Tissue Engineering: Biomaterials that are Compatible with Load-Bearing and Electroactive Tissues // Advanced materials (Deerfield Beach, Fla). 2017. V. 29(8). DOI: 10.1002/ADMA.201603612
  46. Milner P.E., Parkes M., Puetzer J.L. et al. A low friction, biphasic and boundary lubricating hydrogel for cartilage replacement // Acta biomaterialia. 2018. V. 65. P. 102–111. DOI: 10.1016/J.ACTBIO.2017.11.002
  47. Cooper B.G., Stewart R.C., Burstein D. et al. A Tissue-Penetrating Double Network Restores the Mechanical Properties of Degenerated Articular Cartilage // Angewandte Chemie (International ed in English). 2016. V. 55(13). P. 4226–4230. DOI: 10.1002/ANIE.201511767
  48. Baker M.I., Walsh S.P., Schwartz Z., Boyan B.D. A review of polyvinyl alcohol and its uses in cartilage and orthopedic applications // Journal of biomedical materials research Part B, Applied biomaterials. 2012. V. 100(5). P. 1451–1457. DOI: 10.1002/JBM.B.32694
  49. Oliveira A.S., Seidi O., Ribeiro N. et al. Tribomechanical Comparison between PVA Hydrogels Obtained Using Different Processing Conditions and Human Cartilage // Materials (Basel, Switzerland). 2019. V. 12(20). DOI: 10.3390/MA12203413
  50. Sala R.L., Kwon M.Y., Kim M. et al. Thermosensitive Poly(N-vinylcaprolactam) Injectable Hydrogels for Cartilage Tissue Engineering // Tissue engineering Part A. 2017. V. 23(17-18). P. 935–945. DOI: 10.1089/TEN.TEA.2016.0464
  51. Lü J.M., Wang X., Marin-Muller C. et al. Current advances in research and clinical applications of PLGA-based nanotechnology // Expert review of molecular diagnostics. 2009. V. 9(4). P. 325–341. DOI: 10.1586/ERM.09.15
  52. Mozaffari A., Mirzapour S.M., Rad M.S., Ranjbaran M. Cytotoxicity of PLGA-zinc oxide nanocomposite on human gingival fibroblasts // Journal of advanced periodontology & implant dentistry. 2023. V. 15(1). P. 28–34. DOI: 10.34172/JAPID.2023.010
  53. Dong Z., Yuan Q., Huang K. et al. Gelatin methacryloyl (GelMA)-based biomaterials for bone regeneration // RSC advances. 2019. V. 9(31). P. 17737–17744. DOI: 10.1039/C9RA02695A
  54. Yue K., Trujillo-de Santiago G., Alvarez M.M. et al. Synthesis, properties, and biomedical applications of gelatin methacryloyl (GelMA) hydrogels // Biomaterials. 2015. V. 73. P. 254–271. DOI: 10.1016/J.BIOMATERIALS.2015.08.045
  55. Wang Y., Koole L.H., Gao C. et al. The potential utility of hybrid photo-crosslinked hydrogels with non-immunogenic component for cartilage repair // NPJ Regenerative medicine. 2021. V. 6(1). DOI: 10.1038/S41536-021-00166-8
  56. Mouser V.H.M., Abbadessa A., Levato R. et al. Development of a thermosensitive HAMA-containing bio-ink for the fabrication of composite cartilage repair constructs // Biofabrication. 2017. V. 9(1). DOI: 10.1088/1758-5090/AA6265
  57. Feng Q., Lin S., Zhang K. et al. Sulfated hyaluronic acid hydrogels with retarded degradation and enhanced growth factor retention promote hMSC chondrogenesis and articular cartilage integrity with reduced hypertrophy // Acta biomaterialia. 2017. V. 53. P. 329–342. DOI: 10.1016/J.ACTBIO.2017.02.015
  58. Martyniak K., Lokshina A., Cruz M.A. et al. Biomaterial composition and stiffness as decisive properties of 3D bioprinted constructs for type II collagen stimulation // Acta biomaterialia. 2022. V. 152. P. 221–234. DOI: 10.1016/J.ACTBIO.2022.08.058
  59. Wang G., An Y., Zhang X. et al. Chondrocyte Spheroids Laden in GelMA/HAMA Hybrid Hydrogel for Tissue-Engineered Cartilage with Enhanced Proliferation, Better Phenotype Maintenance, and Natural Morphological Structure // Gels (Basel, Switzerland). 2021. V. 7(4). DOI: 10.3390/GELS7040247
  60. Zhao Y., Zhao X., Zhang R. et al. Cartilage Extracellular Matrix Scaffold With Kartogenin-Encapsulated PLGA Microspheres for Cartilage Regeneration // Frontiers in bioengineering and biotechnology. 2020. V. 8. DOI:10.3389/FBIOE.2020.600103
  61. Park H., Choi B., Hu J., Lee M. Injectable chitosan hyaluronic acid hydrogels for cartilage tissue engineering // Acta biomaterialia. 2013. V. 9(1). P. 4779–4786. DOI: 10.1016/J.ACTBIO.2012.08.033
  62. Farsi M., Asefnejad A., Baharifar H. A hyaluronic acid/PVA electrospun coating on 3D printed PLA scaffold for orthopedic application // Progress in biomaterials. 2022. V. 11(1). P. 67–77. DOI: 10.1007/S40204-022-00180-Z
  63. Stockinger B., Shah K., Wincent E. AHR in the intestinal microenvironment: safeguarding barrier function // Nature reviews Gastroenterology & hepatology. 2021. V. 18(8). P. 559–570. DOI: 10.1038/S41575-021-00430-8
  64. Kim H.S., Mandakhbayar N., Kim H.W. et al. Protein-reactive nanofibrils decorated with cartilage-derived decellularized extracellular matrix for osteochondral defects // Biomaterials. 2021. V. 269. DOI: 10.1016/J.BIOMATERIALS.2020.120214
  65. Hsieh C.F., Chen C.H., Kao H.H. et al. PLGA/Gelatin/Hyaluronic Acid Fibrous Membrane Scaffold for Therapeutic Delivery of Adipose-Derived Stem Cells to Promote Wound Healing // Biomedicines. 2022. V. 10(11). DOI: 10.3390/BIOMEDICINES 10112902
  66. Wasyłeczko M., Sikorska W., Chwojnowski A. Review of Synthetic and Hybrid Scaffolds in Cartilage Tissue Engineering // Membranes. 2020. V. 10(11). P. 1–28. DOI: 10.3390/MEMBRANES10110348
  67. Liu F., Li W., Liu H. et al. Preparation of 3D Printed Chitosan/Polyvinyl Alcohol Double Network Hydrogel Scaffolds // Macromolecular bioscience. 2021. V. 21(4). DOI: 10.1002/MABI.202000398
Дата поступления: 19.12.2024
Одобрена после рецензирования: 28.03.2025
Принята к публикации: 19.08.2025