Журнал «Технологии живых систем» №1 за 2019 г.
Статья в номере:
Молекулярные аспекты каскада IL-33/ST2 и его роль при сердечной недостаточности, атеросклерозе и других заболеваниях
Тип статьи: научная статья
DOI: 10.18127/j20700997-201901-04
УДК: 616-01/-099
Авторы:

С.Т. Мацкеплишвили – чл.-корр. РАН, д.м.н., профессор, зам. директора  по научной работе, Медицинский научно-образовательный центр МГУ им. М.В. Ломоносова Е.И. Румянцева – студентка 5-го курса, факультет фундаментальной медицины, 

МГУ им. М.В. Ломоносова 

E-mail: lizarum17@yandex.ru

О.А. Цацулина – студентка 5-го курса, факультет фундаментальной медицины, 

МГУ им. М.В. Ломоносова

E-mail: Olga.Tsatsulina@gmail.com

Аннотация:

Рассмотрены молекулярные аспекты каскада IL-33/ST2, играющего роль в различных процессах, а также его значение в онкологии и иммунопатологии. Приведен обзор наиболее актуальных исследований, которые подтверждают значимость IL-33/ST2 в патогенезе сердечной недостаточности. Доказано, что IL-33 у мышей уменьшает количество и размер атеросклеротических бляшек, а уровень ST2 коррелирует с пульсовым давлением в аорте у больных гипертонической болезнью.

Страницы: 35-45
Список источников
  1. Yancy C.W., Jessup M., Bozkurt B. et al. 2017 ACC/AHA/HFSA Focused Update of the 2013 ACCF/AHA Guideline for the Management of Heart Failure: A Report of the American College of Cardiology / American Heart Association Task Force on Clinical Practice Guidelines and the Heart Failure Society of Amer // J. Am. Coll. Cardiol. 2017. V. 70. № 6. P. 776–803.
  2. la Fuente M. Da, MacDonald T.T., Hermoso M.A. The IL-33/ST2 axis: Role in health and disease // Cytokine Growth Factor Rev. 2015. V. 26. № 6. P. 615–623.
  3. Tominaga S. A putative protein of a growth specific cDNA from BALB/c- 3T3 cells is highly similar to the extracellular portion of mouse interleukin 1 receptor // FEBS. 1989. P. 301–304.
  4. Yanagisawa K., Takagi T., Tsukamoto T. et al. Presence of a novel primary response gene ST2L, encoding a product highly similar to the interleukin 1 receptor type 1 // FEBS Lett. 1993. V. 318. № 1. P. 83–87.
  5. Griesenauer B., Paczesny S. The ST2/IL-33 axis in immune cells during inflammatory diseases // Front. Immunol. 2017. V. 8. P. 1–17.
  6. Lu J., Kang J., Zhang C. et al. The role of IL-33/ST2L signals in the immune cells // Immunol. Lett. 2015. V. 164. № 1. P. 11–17.
  7. Vark L.C. van, Lesman-Leegte I., Baart S.J. et al. Prognostic Value of Serial ST2 Measurements in Patients With Acute Heart Failure // J. Am. Coll. Cardiol. 2017. V. 70. № 19. P. 2378–2388.
  8. Iwahana H., Hayakawa M., Kuroiwa K. et al. Molecular cloning of the chicken ST2 gene and a novel variant form of the ST2 gene product, ST2LV // Biochim. Biophys. Acta – Gene Struct. Expr. 2004. V. 1681. № 1. P. 1–14.
  9. Cayrol C., Girard J.P. Interleukin-33 (IL-33): A nuclear cytokine from the IL-1 family // Immunol. Rev. 2018. V. 281. № 1. P. 154–168.
  10. Lott J.M., Sumpter T.L., Turnquist H.R. New dog and new tricks: evolving roles for IL-33 in type 2 immunity // J. Leukoc. Biol. 2015. V. 97. № 6. P. 1037–1048.
  11. Sun Z., Chang B., Gao M. et al. IL-33-ST2 Axis in Liver Disease: Progression and Challenge // Mediators Inflamm. 2017. V. 2017. P. 1–8.
  12. Palmer G., Lipsky B.P., Smithgall M.D. et al. The IL-1 receptor accessory protein (AcP) is required for IL-33 signaling and soluble AcP enhances the ability of soluble ST2 to inhibit IL-33 // Cytokine. 2008. V. 42. № 3. P. 358–364.
  13. Lu B., Yang M., Wang Q. Interleukin-33 in tumorigenesis, tumor immune evasion, and cancer immunotherapy // J. Mol. Med. 2016. V. 94. № 5. P. 535–543.
  14. Jensen L.E., Whitehead A.S. Expression of alternatively spliced interleukin-1 receptor accessory protein mRNAs is differentially regulated during inflammation and apoptosis. // Cell. Signal. 2003. V. 15. № 8. P. 793–802.
  15. Aimo A., Migliorini P., Vergaro G. et al. The IL-33/ST2 pathway, inflammation and atherosclerosis: Trigger and target? // Int. J. Cardiol. 2018. V. 267. P. 1–16.
  16. Wang E., Jia X., Ruan C. et al. miR-487b mitigates chronic heart failure through inhibition of the IL-33 / ST2 signaling pathway // Oncotarget. 2017. V. 8. № 31. P. 51688–51702.
  17. Pascual-Figal D.A., Januzzi J.L. The biology of ST2: The international ST2 consensus panel // Am. J. Cardiol. 2015.  V. 115. № 7. P. 3B–7B.
  18. Gao Q., Li Y., Li M. The potential role of IL-33/ST2 signaling in fibrotic diseases // J. Leukoc. Biol. 2015. V. 98. № 1. P. 15–22.
  19. Lefrançais E., Roga S., Gautier V. et al. IL-33 is processed into mature bioactive forms by neutrophil elastase and cathepsin G. // Proc. Natl. Acad. Sci. U. S. A. 2012. V. 109. № 5. P. 1673–8.
  20. Romagnani S. T-cell subsets (Th1 versus Th2) // Ann. Allergy, Asthma Immunol. 2000. V. 85. № 1. P. 9-21.
  21. Liew F.Y., Girard J.P., Turnquist H.R. Interleukin-33 in health and disease // Nat. Rev. Immunol. 2016. V. 16. № 11. P. 676–689.
  22. Barlow J.L., Peel S., Fox J. et al. IL-33 is more potent than IL-25 in provoking IL-13–producing nuocytes (type 2 innate lymphoid cells) and airway contraction // J. Allergy Clin. Immunol. 2013. V. 132. № 4. P. 933–941.
  23. Colin S., Chinetti-Gbaguidi G., Staels B. Macrophage phenotypes in atherosclerosis // Immunol. Rev. 2014. V. 262. № 1. P. 153–166.
  24. Paoli F. De, Staels B., Chinetti-Gbaguidi G. Macrophage Phenotypes and Their Modulation in Atherosclerosis // Circ. J. 2014. V. 78. № 8. P. 1775–1781.
  25. Xu D., Chan W.L., Leung B.P. et al. Selective expression of a stable cell surface molecule on type 2 but not type 1 helper T cells // J. Exp. Med. 1998. V. 187. № 5. P. 787–94.
  26. Oh J., Riek A.E., Weng S. et al. Endoplasmic reticulum stress controls M2 macrophage differentiation and foam cell formation // J. Biol. Chem. 2012. V. 287. № 15. P. 11629–41.
  27. Su Z., Lin J., Lu F. et al. Potential autocrine regulation of interleukin-33/ST2 signaling of dendritic cells in allergic inflammation // Mucosal Immunol. 2013. V. 6. № 5. P. 921–30.
  28. Tjota M.Y., Williams J.W., Lu T. et al. IL-33-dependent induction of allergic lung inflammation by FcγRIII signaling //  J. Clin. Invest. 2013. V. 123. № 5. P. 2287–97.
  29. Cao K., Liao X., Lu J. et al. IL-33 / ST2 plays a critical role in endothelial cell activation and microglia-mediated neuroinflammation modulation. 2018. V. 15. P. 1–12.
  30. Khaitov M.R., Gaisina A.R., Shilovskiy I.P. et al. The Role of Interleukin 33 in Pathogenesis of Bronchial Asthma . New Experimental Data // Biochem. 2018. V. 83. № 1. P. 13–25.
  31. Miller A.M., Liew F.Y. The IL-33/ST2 pathway – A new therapeutic target in cardiovascular disease // Pharmacol. Ther. 2011. V. 131. № 2. P. 179–186.
  32. Milovanovic M., Volarevic V., Radosavljevic G. et al. IL-33/ST2 axis in inflammation and immunopathology // Immunol. Res. 2012. V. 52. № 1–2. P. 89–99.
  33. Zhou Y., Ji Y., Wang H. et al. IL-33 Promotes the Development of Colorectal Cancer Through Inducing Tumor-Infiltrating ST2L + Regulatory T Cells in Mice // Technol. Cancer Res. Treat. 2018. V. 17. P. 1–11.
  34. Yang Z., Gao X., Wang J. et al. Interleukin-33 enhanced the migration and invasiveness of human lung cancer cells // Onco. Targets. Ther. 2018. V. 11. P. 843–849.
  35. Yang M., Feng Y., Yue C. et al. Lower expression level of IL-33 is associated with poor prognosis of pulmonary adenocarcinoma // PLoS One. 2018. V. 13. № 3. P. 1–13.
  36. Wu C., Wu Y., Cheng C. et al. Interleukin-33 Predicts Poor Prognosis and Promotes Renal Cell Carcinoma Cell Growth Through its Receptor ST2 and the JNK Signaling Pathway // Cell. Physiol. Biochem. 2018. V. 47. № 1. P. 191–200.
  37. Pawel S., Maciej M., Maciej Z. et al. Novel interleukin-33 and its soluble ST2 receptor as potential serum biomarkers in parotid gland tumors // Exp. Biol. Med. 2018. V. 243. № 9. P. 762–769.
  38. Xu L., Li W., Wang X. et al. The IL-33-ST2-MyD88 axis promotes regulatory T cell proliferation in the murine liver // Eur. J. Immunol. 2018. V. 48. P. 1–18.
  39. Bayés-Genís A., Núñez J., Lupón J. Soluble ST2 for Prognosis and Monitoring in Heart Failure // J. Am. Coll. Cardiol. 2017. V. 70. № 19. P. 2389–2392.
  40. Altara R., Ghali R., Mallat Z. et al. Conflicting Vascular and Metabolic Impact of the IL-33 / sST2 Axis // 2018. 
  41. Sanada S., Hakuno D., Higgins L.J. et al. IL-33 and ST2 comprise a critical biomechanically induced and cardioprotective signaling system // J. Clin. Invest. 2007. V. 117. № 6. P. 1538–1549.
  42. Aimo A., Vergaro G., Ripoli A. et al. Meta-Analysis of Soluble Suppression of Tumorigenicity-2 and Prognosis in Acute Heart Failure // JACC Hear. Fail. 2017. V. 5. № 4. P. 287–296.
  43. Aimo A., Vergaro G., Passino C. et al. Prognostic Value of Soluble Suppression of Tumorigenicity-2 in Chronic Heart Failure: A Meta-Analysis // JACC. Heart Fail. 2017. V. 5. № 4. P. 280–286.
  44. Pascual-Figal D.A., Ordoñez-Llanos J., Tornel P.L. et al. Soluble ST2 for predicting sudden cardiac death in patients with chronic heart failure and left ventricular systolic dysfunction // J. Am. Coll. Cardiol. 2009. V. 54. № 23. P. 2174–9.
  45. Lupón J., Gaggin H.K., Antonio M. de et al. Biomarker-assist score for reverse remodeling prediction in heart failure: The ST2-R2 score // Int. J. Cardiol. 2015. V. 184. P. 337–43.
  46. Bayes-Genis A., Pascual-Figal D., Januzzi J.L. et al. Soluble ST2 Monitoring Provides Additional Risk Stratification for Outpatients With Decompensated Heart Failure // Rev. Española Cardiol. (English Ed. 2010. V. 63. № 10. P. 1171–1178.
  47. Bouwens E., Brankovic M., Mouthaan H. Temporal patterns of 7 blood biomarkers of cardiac remodelling in relation to prognosis of patients with chronic heart failure. Proceedings from American Heart Association's Scientific Session in Anaheim, California, 2017.
  48. Sugano A., Seo Y., Ishizu T. Interaction between Mineralocorticoid Receptor Antagonist and soluble ST2 in Patients with Heart Failure and Preserved Ejection Fraction. Proceedings from American Heart Association's Scientific Session in Anaheim, California, 2017.
  49. Sanchez-Mas J., Lax A., Asensio-Lopez M. del C. et al. Modulation of IL-33/ST2 system in postinfarction heart failure: Correlation with cardiac remodelling markers // Eur. J. Clin. Invest. 2014. V. 44. № 7. P. 643–651.
  50. Tseng C.C.S., Huibers M.M.H., Gaykema L.H. et al. Soluble ST2 in end-stage heart failure, before and after support with a left ventricular assist device // ARPN J. Eng. Appl. Sci. 2017. V. 12. № 10. P. 3218–3221.
  51. Kim S.H., Kim H.L., Lim W.H. et al. Soluble ST2 is a novel marker of aortic stiffness and arteriosclerosis measured by invasive hemodynamic study // Atherosclerosis. 2016. V. 252. № 2016. P. e165.
  52. Miller A.M., Xu D., Asquith D.L. et al. IL-33 reduces the development of atherosclerosis // J. Exp. Med. 2008. V. 205. № 2. P. 339–346.
  53. McLaren J.E., Michael D.R., Salter R.C. et al. IL-33 Reduces Macrophage Foam Cell Formation // J. Immunol. 2010. V. 185. № 2. P. 1222–1229.
  54. Martin P., Palmer G., Rodriguez E. et al. Atherosclerosis severity is not affected by a deficiency in IL-33 / ST2 signaling // 2015. V. 3. P. 239–246.
Дата поступления: 13 декабря 2018 г