350 руб
Журнал «Технологии живых систем» №1 за 2016 г.
Статья в номере:
Кислый и основной факторы роста фибробластов и канцеро-генез Ч. 2. Ауто/паракринные и лиганд-независимые эффекты, связь со стероидогенезом и перспективы анти-ФРФ-терапии при опухолях
Авторы:
Ольга Ивановна Костылева - к.м.н., ст. науч. сотрудник, лаборатория клинической биохимии, ФГБУ «Российский онкологический научный центр им. Н.Н. Блохина» Минздрава России (Москва). Е-mail: ok_olga68@mail.ru Евгения Александровна Тен - аспирант, кафедра клинической биохимии и лабораторной диагностики, Московский государственный медико-стоматологический университет им. А.И. Евдокимова Минздрава России Николай Евгеньевич Кушлинский - д.м.н., профессор, чл.-корр. РАН, зав. лабораторией клинической биохимии, ФГБУ «Российский онкологический научный центр им. Н.Н. Блохина» Минздрава России (Москва)
Аннотация:
Подробно рассмотрены данные о лиганд-зависимых и лиганд-независимых эффектах факторов роста фибробластов (ФРФ).
Страницы: 14-24
Список источников

 

  1. Coleman S.J., Bruce C., Chioni A.M., et al. The ins and outs of fibroblast growth factor receptor signalling // Clin. Sci. (Lond). 2014. V. 127. № 4. P. 217-231.
  2. Burger R.A. Overview of anti-angiogenic agents in development for ovarian cancer // Gynecol. Oncol. 2011. V. 121. № 1. P. 230-238.
  3. Seghezzi G., Patel S., Ren C.J., et al. Fibroblast growth factor-2 (FGF-2) induces vascular endo­thelial growth factor (VEGF) expression in the endothelial cells of forming capillaries: an auto­crine mechanism contributing to angiogenesis // J. Cell. Biol. 1998. V. 141. Р. 1659-1673.
  4. Takahashi J.A., Mori H., Fukumoto M., et al. Gene expression of fibroblast growth factors in human gliomas and meningiomas: demonstration of cellular source of basic fibroblast growth factor mRNA and peptide in tumor tissues // Proc. Natl. Acad. Sci. USA. 1990.V.87. Р. 5710-5714.
  5. Takahashi J.A., Fukumoto M., Igarashi K., et al. Correlation of basic fibroblast growth factor expression levels with the degree of malignancy and vascularity in human gliomas // J. Neurosurg. 1992. V.76. Р. 792-798.
  6. Powers C.J., McLeskey S.W., Wellstein A. Fibro­blast growth factors, their receptors and sig­naling // Endocr. Relat. Cancer. 2000. V. 7.  № 3. P. 165-197.
  7. Turner N., Grose R. Fibroblast growth factor signalling: from development to cancer // Nat. Rev. Cancer. 2010. V. 10. № 2. P. 116-129.
  8. Jin C., Wang F., Wu X. , et al. Directionally specific paracrine communication mediated by epithelial FGF9 to stromal FGFR3 in two-compartment premalignant prostate tumors // Cancer Res. 20014. V. 64. № 13. P. 4555-4562.
  9. Levy-Adam F., Ilan N., Vlodavsky I.Tumorigenic and adhesive properties of hepara­nase // Semin. Cancer Biol. 2010. V. 20. № 3.  P. 153-160.
  10. Easton D.F., Pooley K.A., Dunning A.M., et al. Genome-wide association study identifies novel breast cancer susceptibility loci // Nature. 2007. V. 447. № 7148. P. 1087-1093.
  11. Kurtz A., Wang H.L., Darwiche N., et al. Expression of a binding protein for FGF is associated with epithelial development and skin carcinogennesis // Oncogene. 1997. V. 14. №22.P. 2671-2681.
  12. Giri D., Ropiquet F., Ittmann M. Alterations in expression of basic fibroblast growth factor (FGF) 2 and its receptor FGFR-1 in human prostate cancer // Clin. Cancer Res. 1999. V. 5. № 5. P. 1063-1071.
  13. Wu X., Jin C., Wang F., et al. Stromal cell heterogeneity in fibroblast growth factor-mediated stromal-epithelial cell cross-talk in premalignant prostate tumors // Cancer Res. 2003. V. 63. № 16. P. 4936-4944.
  14. Acevedo V.D., Ittmann M., Spencer D.M. Paths of FGFR-driven tumorigenesis // Cell Cycle. 2009. V. 8. № 4. P. 580-588.
  15. Mahadevan D., Von Hoff D.D. Tumor-stroma interactions in pancreatic ductal adenocarcinoma // Mol. Cancer Ther. 2007. V. 6. № 4. P. 1186-1197.
  16. Neesse A., Michl P., Frese K.K., et al. Stromal biology and therapy in pancreatic cancer // Gut. 2011. V. 60. № 6. P. 861-868.
  17. Kornmann M., Ishiwata T., Beger H.G., Korc M. Fibroblast growth factor-5 stimulates mitogenic signaling and is overexpressed in human pancreatic cancer: evidence for autocrine and paracrine actions // Oncogene. 1997. V. 15. № 12.  P. 1417-1424.
  18. Nomura S., Yoshitomi H., Takano S., et al.FGF10/FGFR2 signal induces cell migration and invasion in pancreatic cancer // Br. J. Cancer. 2008. V. 99. № 2. P. 305-313.
  19. Ishiwata T., Matsuda Y., Yamamoto T., et al. Enhanced expression of fibroblast growth factor receptor 2 IIIc promotes human pancreatic cancer cell proliferation // Am. J. Pathol. 2012. V. 180. № 5. P. 1928-1941.
  20. TianX., Chen G., Zhou S., et al. Interactions of pancreatic cancer and stellate cells are mediated by FGFR1-III isoform expression // Hepatogastroen­terology. 2012. V. 59. № 117. P. 1604-1608.
  21. Thiery J.P., Sleeman J.P. Complex networks orchestrate epithelial-mesenchymal transitions // Nat. Rev. Mol. Cell Biol. 2006. V. 7. № 2. P. 131-142.
  22. Yang F., Strand D.W., Rowley D.R. Fibroblast growth factor-2 mediates transforming growth factor-beta action in prostate cancer reactive stroma // Oncogene. 2008. V. 27. № 4.  P. 450-459.
  23. Zavadil J., Bottinger E.P. TGF-beta and epithelial-to-mesenchymal transitions // Oncogene. 2005. V. 24. № 37. P. 5764-5774.
  24. Akhurst R.J., Derynck R. TGF-beta signaling in cancer -a double-edged sword // Trends Cell Biol. 2001.  V. 11. № 11. P. 44-51.
  25. Shirakihara T., Horiguchi K., Miyazawa K., et al. TGF-beta regulates isoform switching of FGF receptors and epithelial-mesenchymal transition // EMBO J. 2011. V. 30. № 4. P. 783-795.
  26. Shimizu T., Ishikawa T., Iwai S., et al.Fibroblast growth factor-2 is an important factor that maintains cellular immaturity and contributes to aggressiveness of osteosarcoma // Mol. Cancer Res. 2012. V. 10. № 3. P. 454-468.
  27. Samaniego F., Markham P.D., Gendelman R., et al. Vascular endothelial growth factor and basic fibroblast growth factor present in Kaposi\'s sarcoma (KS) are induced by inflammatory cytokines and synergize to promote vascular permeability and KS lesion development // Am. J. Pathol. 1998. V. 152. № 6. P. 1433-1443.
  28. Hsiung R., Zhu W., Klein G., et al. High basic fibroblast growth factor levels in nipple aspirate fluid are correlated with breast cancer // Cancer J. 2002. V. 8. № 4. P. 303-310.
  29. Sartippour M.R., Zhang L., Lu M., et al. Nipple fluid basic fibroblast growth factor in patients with breast cancer // Cancer Epidemiol. Biomarkers Prev. 2005. V. 14. № 12. P. 2995-2998.
  30. Faridi A., Rudlowski C., Biesterfeld S., et al. Long-term follow-up and prognostic significance of angiogenic basic fibroblast growth factor (bFGF) expression in patients with breast cancer // Pathol. Res. Pract. 2002. V. 198. № 1. P. 1-5.
  31. Chang J., Liu X., Wang S., et al. Prognostic value of FGFR gene amplification in patients with different types of cancer: a systematic review and meta-analysis // PLoS One. 2014. V. 9 № 8:e105524.
  32. Greenman C., Stephens P., Smith R., et al. Patterns of somatic mutation in human cancer genomes // Nature. 2007. V. 446. № 7132. P. 153-158.
  33. Kelleher F.C., O\'Sullivan H., Smyth E. , et al. Fibroblast growth factor receptors, developmental corruption and malignant disease // Carcinogenesis. 2013. V. 34. № 10. P. 2198-2205.
  34. Goriely A., Hansen R.M., Taylor I.B., et al. Activating mutations in FGFR3 and HRAS reveal a shared genetic origin for congenital disorders and testicular tumors // Nat. Genet. 2009. V. 41. № 11. P. 1247-1252.
  35. Singh D., Chan J.M., Zoppoli P. , et al. Transforming fusions of FGFR and TACC genes in human glioblastoma // Science. 2012. V. 337. № 6099. P. 1231-1235.
  36. Karlsson E., Waltersson M.A., Bostner J. , et al. High-resolution genomic analysis of the 11q13 amplicon in breast cancers identifies synergy with 8p12 amplification, involving the Guagnano V., Kauffmann A., Wohrle S., et al.FGFR genetic alterations predict for sensitivity to NVP-BGJ398, a selective pan-FGFR inhibitor // Cancer Discov. 2012. V. 2. № 12. P. 1118-1133.
  37. Amary M.F., Ye H., Forbes G. , et al. Isocitrate dehydrogenase 1 mutations (IDH1) and p16/CDKN2A copy number change in conventional chondrosarcomas // Virchows Arch. 2016. V. 466. № 2. P. 217-222.
  38. mTOR targets S6K2 and 4EBP1 // Genes Chromosomes Cancer. 2011. V. 50. № 10. P. 775-787.
  39. Mirabello L., Yu K., Berndt S.I., et al. A comprehensive candidate gene approach identifies genetic variation associated with osteosarcoma // BMC Cancer. 2011. V. 11. P. 209. doi: 10.1186/1471-2407-11-209.
  40. Sadikovic B., Yoshimoto M., Chilton-MacNeill S., et al. Identification of interactive networks of gene expression associated with osteosarcoma oncoge­nesis by integrated molecular profiling // Hum. Mol. Genet. 2009. V. 18. № 11. P. 1962-1975.
  41. Entz-Werle N., Lavaux T., Metzger N. , et al. Involvement of MET/TWIST/APC combination or the potential role of ossification factors in pediatric high-grade osteosarcoma oncogenesis // Neoplasia. 2007. V. 9. № 8. P. 678-688.
  42. Reintjes N., Li Y., Becker A., et al. Activating somatic FGFR2 mutations in breast cancer // PLoS One. 2013. 8:e60264.
  43. Huijts P.E., van Dongen M., de Goeij M.C., et al. Allele-specific regulation of FGFR2 expression is cell type-dependent and may increase breast cancer risk through a paracrine stimulus involving FGF10 // Breast Cancer Res. 2011. V. 13.  № 4. P. R72.
  44. El Yazidi I., Boilly-Marer Y. Production of acidic and basic fibroblast growth factor by the hormone-independent breast cancer cell line MDA-MB-231 // Anticancer Res. 1996. V. 15. № 3.  P. 783-790.
  45. Cronauer M.V., Nessler-Menardi C., Klocker H., et al. Androgen receptor protein is down-regulated by basic fibroblast growth factor in prostate cancer cells // Br. J. Cancer. 2000. V. 82. № 1.  P. 39-45.
  46. Yan G., Fukabori Y., McBride G., et al. Exon switching and activation of stromal and embryonic fibroblast growth factor (FGF)-FGF receptor genes in prostate epithelial cells accompany stromal independence and malignancy // Mol. Cell Biol. 1993. V. 13. № 8. P. 4513-4522.
  47. Spielberger R., Stiff P., Bensinger W., et al. Palifermin for oral mucositis after intensive therapy for hematologic cancers // N. Engl. J. Med. 2004. V. 351. № 25. P. 2590-2598.
  48. Gavine P.R., Mooney L., Kilgour E., et al. AZD4547: an orally bioavailable, potent, and selective inhibitor of the fibroblast growth factor receptor tyrosine kinase family // Cancer Res. 2012. V. 72. № 8. P. 2045-2056.
  49. Zhang J., Zhang L., Su X., et al. Translating the therapeutic potential of AZD4547 in FGFR1-amplified non-small cell lung cancer through the use of patient-derived tumor xenograft models // Clin. Cancer Res. 2012. V. 18. № 24.  P. 6658-6667.
  50. Guagnano V., Furet P., Spanka C. , et al. Discovery of 3-(2,6-dichloro-3,5-dimethoxy-phenyl)-1-{6-[4-(4-ethyl-piperazin-1-yl)-phenylamin o]-pyri­midin-4-yl}-1-methyl-urea (NVP-BGJ398), a potent and selective inhibitor of the fibroblast growth factor receptor family of receptor tyrosine kinase // J. Med. Chem. 2011. V. 54. № 20.  P. 7066-7083.
  51. Elbauomy Elsheikh S., Green A.R., Lambros M.B. , et al. FGFR1 amplification in breast carcinomas: a chromogenic in situ hybridisation analysis // Breast Cancer Res. 2007. V. 9. № 2. R23.
  52. Pai R., Dunlap D., Qing J. , et al. Inhibition of fibroblast growth factor 19 reduces tumor growth by modulating beta-catenin signaling // Cancer Res. 2008. V. 68. № 13. P. 5086-5095.
  53. Zhao G., Li W.Y., Chen D., et al. A novel, selective inhibitor of fibroblast growth factor receptors that shows a potent broad spectrum of antitumor activity in several tumor xenograft models // Mol. Cancer Ther. 2011. V. 10. № 11.  P. 2200-2210.
  54. Ellis P.M., Kaiser R., Zhao Y. , et al. Phase I open-label study of continuous treatment with BIBF 1120, a triple angiokinase inhibitor, and pemetrexed in pretreated non-small cell lung cancer patients // Clin. Cancer Res. 2010.  V. 16. № 10. P. 2881-2889.
  55. Harding T.C., Long L., Palencia S. , et al. Blockade of nonhormonal fibroblast growth factors by FP-1039 inhibits growth of multiple types of cancer // Sci. Transl. Med. 2013. V. 5. № 178. 178ra39.