350 руб
Журнал «Наукоемкие технологии» №5 за 2024 г.
Статья в номере:
Радиометрия лесных пологов
Тип статьи: научная статья
DOI: https://doi.org/10.18127/j19998465-202405-06
УДК: 621.382
Авторы:

И.А. Сидоров1, Г.А. Гудков2, Е.П. Новичихин3, С.В. Агасиева4, А.С. Черников5, С.В. Чижиков6

1–3,5,6 МГТУ им. Н.Э. Баумана (Москва, Россия)
3 Фрязинский филиал Института радиотехники и электроники им. В.А. Котельникова РАН
(г. Фрязино, Московская обл., Россия)
4 Российский университет дружбы народов им. Патриса Лумумбы (Москва, Россия)
6 ООО «НПП «Технологические инновации» (Москва, Россия)
1 igorasidorov@yandex.ru, 2 ggudkov967@gmail.com, 3 epnov@mail.ru, 4 agasieva-sv@rudn.ru, 5 chernik@bmstu.ru, 6 chigikov95@mail.ru

Аннотация:

Постановка проблемы. Спутниковые СВЧ-радиометрические методы представляют большой научный и практический интерес для исследований тропических, умеренных и бореальных лесов и мониторинга происходящих в них процессов.

Цель. Оценить актуальность и технологические приоритеты спутниковой СВЧ-радиометрии в отношении мониторинга экологических и климатических процессов, протекающих в лесных пологах.

Результаты. Выделены приоритеты и преимущества использования спутниковой микроволновой радиометрии при изучении радиотеплового излучения лесных покровов. Определены препятствия в развитии этой технологии.

Практическая значимость. Результаты исследования могут быть использованы для принятия решений в области технологического обновления и совершенствования процессов анализа лесных экосистем. Также представленные материалы могут быть полезны для специалистов в области разработки и внедрения инновационных технологий.

Страницы: 68-77
Для цитирования

Сидоров И.А., Гудков Г.А., Новичихин Е.П., Агасиева С.В., Черников А.С., Чижиков С.В. Радиометрия лесных пологов // Наукоемкие технологии. 2024. Т. 25. № 5. С. 68−77. DOI: https://doi.org/10.18127/ j19998465-202405-06

Список источников
  1. Шутко А.М., Плющев В.А., Сидоров И.А. и др. СВЧ-радиометрия земной и водной поверхностей: от теории к практике. София: Академическое издательство имени проф. Марина Дринова. 2014.
  2. Mohanty, B.P., Cosh, M.H., Lakshmi, V., Montzka, C. Soil Moisture Remote Sensing: State-of-the-Science. Vadose Zone Journal. 2017. V. 16. P. 1–9 vzj2016.10.0105.URL: https://doi.org/10.2136/vzj2016.10.0105
  3. Grant J.P., Wigneron J.-P., Van de Griend A.A., Kruszewski A., Schmidl Søbjærg S., Skou N. A field experiment on microwave forest radiometry: L-band signal behaviour for varying conditions of surface wetness. Remote Sensing of Environment. 2007. V. 109. Is. 1. P. 10–19. URL: https://doi.org/10.1016/j.rse.2006.12.001.
  4. Saleh K., Wigneron J.-P., Calvet J.-C., Lopez-Baeza E., Ferrazzoli P., Berger M. et al. The EuroSTARRS airborne campaign in support of the SMOS mission: First results over land surfaces. International Journal of Remote Sensing. 2004. V. 25(1). P. 177−194.
  5. Mo T., Choudhury B., Schmugge T., Wang J., Jackson T. A model for microwave emission from vegetation-covered fields. Journal of Geophysical Research: Oceans (1978–2012). 1982, V. 87. P. 11229–11237.
  6. Wigneron J.P., Laguerre L., Kerr Y.H. A simple parameterization of the L-band microwave emission from rough agricultural soils. IEEE Transactions on Geoscience and Remote Sensing. 2001. V. 39. P. 1697–1707.
  7. Escorihuela M.J., Kerr Y.H., de Rosnay P., Wigneron J.P., Calvet J.C., Lemaitre F. A simple model of the bare soil microwave emission at L-band. IEEE Transactions on Geoscience and Remote Sensing. 2007. V. 45. 1978–1987.
  8. Wigneron J.P., Chanzy A., Kerr Y., Lawrence H., Shi J., Escorihuela M.J., Saleh-Contell K. et al. Evaluating an improved parameterization of the soil emission in L-MEB. IEEE Transactions on Geoscience and Remote Sensing. 2011. V. 49. P. 1177–1189. URL: http://dx.doi. org/10.1109/TGRS.2010.2075935.
  9. Cano A., Saleh K., Wigneron J.P., Antolín C., Balling J.E., Kerr Y.H., Kruszewski A., Millán-Scheiding C., Søbjærg S.S., Skou N. et al. The SMOS Mediterranean Ecosystem L-Band Characterisation Experiment (MELBEX-I) over natural shrubs. Remote Sensing of Environment. 2010. V. 114. P. 844–853.
  10. Lawrence H., Wigneron J.P., Demontoux F., Mialon A., Kerr Y. Evaluating the semiempirical h–q model used to calculate the L-band emissivity of a rough bare soil. IEEE Transactions on Geoscience and Remote Sensing. 2013. V. 51. P. 4075–4084. URL: http://dx.doi.org/ 10.1109/TGRS.2012.2226995.
  11. Schlenz F., Fallmann J., Marzahn P., Loew A., Mauser W. Characterization of rape field microwave emission and implications to surface soil moisture retrievals. Remote Sensing. 2012. V. 4. P. 247–270.
  12. Wang J.R., McMurtrey J.E., Engman E.T., Jackson T.J., Schmugge T.J., Gould W.I., Glazar W.S. et al. Radiometric measurements over bare and vegetated fields at 1.4-GHz and 5-GHz frequencies. Remote Sensing of Environment. 1982. V. 12. P. 295–311.
  13. Merlin O., Walker J.P., Panciera R., Escorihuela M.J., Jackson T.J. Assessing the SMOS soil moisture retrieval parameters with high-resolution NAFE'06 data. IEEE Geoscience and Remote Sensing Letters. 2009. V. 6. P. 635–639.
  14. Panciera R., Walker J.P., Merlin O. Improved understanding of soil surface roughness parameterization for L-band passive microwave soil moisture retrieval. IEEE Geoscience and Remote Sensing Letters. 2009b. V. 6. P. 625–629.
  15. Panciera R., Walker J.P., Kalma J.D., Kim E.J., Saleh K., Wigneron J.P. Evaluation of the SMOS L-MEB passive microwave soil moisture retrieval algorithm. Remote Sensing of Environment. 2009a. V. 113. P. 435–444.
  16. Panciera R., Walker J.P., Jackson T.J., Gray D., Tanase M., Ryu D., Monerris A., Yardley H., Rudiger C., Wu X. et al. The soil moisture active passive experiments (SMAPEX): Toward soil moisture retrieval from the smap mission. IEEE Transactions on Geoscience and Remote Sensing. 2014. V. 52. P. 490–507.
  17. Peischl S., Walker J.P., Ryu D., Kerr Y.H., Panciera R., Rüdiger C. Wheat canopy structure and surface roughness effects on multiangle observations at Lband. IEEE Transactions on Geoscience and Remote Sensing. 2012. V. 50. P. 1498–1506.
  18. Saleh K., Wigneron J.P., Waldteufel P., De Rosnay P., Schwank M., Calvet J.C., Kerr Y. Estimates of surface soil moisture under grass covers using L-band radiometry. Remote Sensing of Environment. 2007. V. 109. P. 42–53.
  19. Saleh K., Wigneron J.-P., de Rosnay P., Calvet J.-C., Escorihuela M.J., Kerr Y. et al. Impact of rain interception by vegetation and mulch on the L-band emission of natural grass (SMOSREX Experiment). Remote Sensing of Environment. 2006. V. 101(1). P. 127−139.
  20. Wigneron J.-P., Schwank M., Baeza E.L., Kerr Ya., Novello N., Millan C., Moisy Ch., Richaume Ph., Mialon A., Al Bitar A., Cabot F., Lawrence H., Guyon D., Calvet J.-Ch., Grant J.P., Casal T., de Rosnay P., Saleh K., Mahmoodi A., Delwart S., Mecklenburg S. First evaluation of the simultaneous SMOS and ELBARA-II observations in the Mediterranean region, Remote Sensing of Environment. 2012. V. 124. P. 26–37. URL: https://doi.org/10.1016/j.rse.2012.04.014.
  21. Oliva R., Daganzo E., Kerr Y.H., Mecklenburg S., Nieto S., Richaume P., Gruhier, C. SMOS radio frequency interference scenario: Status and actions taken to improve the rfi environment in the 1400–1427-MHz passive band. IEEE Transactions on Geoscience and Remote Sensing. 2012. V. 50. P. 1427–1439.
  22. Skou N., Misra S., Balling J.E., Kristensen S.S., Sobjaerg S.S. L-band RFI as experienced during airborne campaigns in preparation for SMOS. IEEE Transactions on Geoscience and Remote Sensing. 2010. V. 48. P. 1398–1407.
  23. Rodriguez-Fernandez N., Richaume P., Aires F., Prigent C., Kerr Y., Kolassa J., Mahmoodi A. et al. Soil moisture retrieval from SMOS observations using neural networks. In: Geoscience and Remote Sensing Symposium (IGARSS), 2014 IEEE International. IEEE. P. 2431–2434.
  24. Wang S., Wigneron J.P., Jiang L.M., Parrens M., Yu X.Y., Al-Yaari A., Kerr Y. et al. Global-scale evaluation of roughness effects on C-band AMSR-E observations. Remote Sensing. 2015. V. 7. P. 5734–5757.
  25. Grant J.P., Saleh-Contell K., Wigneron J.P., Guglielmetti M., Kerr Y.H., Schwank M., Van de Griend A.A. Calibration of the L-MEB model over a coniferous and a deciduous forest. IEEE Transactions on Geoscience and Remote Sensing. 2008. V. 46. P. 808–818.
  26. Colliander A., Cosh M.H., Kelly, V.R., Kraatz S., Bourgeau‐Chavez L., Siqueira P. et al. SMAP detects soil moisture under temperate forest canopies. Geophysical Research Letters. 2020. V. 47. P. e2020GL089697. URL: https://doi.org/ 10.1029/2020GL089697
  27. Colliander A., Njoku E.G., Huang H., Tsang L. Soil moisture retrieval using full wave simulations of 3‐D Maxwell equations for compensating vegetation effects. Proc. IEEE Int. Geosci. Remote Sens. Symposium 2018.
  28. Chan S.K., Bindlish R., O'Neill P.E., Njoku E., Jackson T., Colliander A. et al. Assessment of the SMAP passive soil moisture product. IEEE Transactions on Geoscience and Remote Sensing. 2016. V. 54(8). P. 4994–5007. URL: https://doi.org/10.1109/TGRS.2016.2561938
  29. Chaubell M.J., Yueh S.H., Dunbar R.S., Colliander A., Chen F., Chan S.K. et al. Improved SMAP dual‐channel algorithm for the retrieval of soil moisture. IEEE Transactions on Geoscience and Remote Sensing. 2020. V. 58(6). P. 3894–3905. URL: https://doi.org/10.1109/ TGRS.2019.2959239
  30. Konings A.G., Piles M., Das N., Entekhabi D. L‐band vegetation optical depth and effective scattering albedo estimation from SMAP. Remote Sensing of Environment. 2017. V. 198. P. 460–470. URL: https://doi.org/10.1016/j.rse.2017.06.037
  31. He L., Chen J.M., Liu J., Bélair S., Luo X. Assessment of SMAP soil moisture for global simulation of gross primary production, J. Geophys. Res. Biogeosci. 2017. V. 122. P. 1549–1563. DOI:10.1002/ 2016JG003603.
  32. Kerr Y., Waldteufel P., Richaume P., Wigneron J., Ferrazzoli P., Gurney R. SMOS level 2 processor for soil moisture Algorithm Theoretical Based Document (ATBD), CESBIO, Toulouse. Technical report. France, tech. rep. SO-TN-ESL-SM-GS-0001. 2010a.
  33. Wigneron J.P., Kerr Y., Waldteufel P., Saleh K., Escorihuela M.J., Richaume P., Schwank M. L-band microwave emission of the biosphere (L-MEB) model: Description and calibration against experimental data sets over crop fields. Remote Sensing of Environment. 2007. V. 107. P. 639–655. URL: http://dx.doi.org/10.1016/j.rse.2006.10.014.
  34. Njoku E.G., Wilson W.J., Yueh S.H., Dinardo S.J., Li F.K., Jackson T.J., Bolten J. Observations of soil moisture using a passive and active low-frequency microwave airborne sensor during SGP99. IEEE Transactions on Geoscience and Remote Sensing. 2002. V. 40. P. 2659–2673.
  35. Kurum M. Quantifying scattering albedo in microwave emission of vegetated terrain. Remote Sensing of Environment. 2013. V. 129. P. 66–74.
  36. Mladenova I., Jackson T., Njoku E., Bindlish R., Chan S., Cosh M., Holmes T., de Jeu R., Jones L., Kimball J. et al. Remote monitoring of soil moisture using passive microwave-based techniques—Theoretical basis and overview of selected algorithms for AMSR-E. Remote Sensing of Environment. 2014. V. 144. P. 197–213.
  37. Ulaby F.T. Microwave remote sensing: Active and passive, radar remote sensing and surface scattering and emission theory.1982. V. 2. Addison-Wesley: Reading, Mass.
  38. Parrens M., Wigneron J.-P., Richaume P., Mialon A., Al Bitar A., Fernandez-Moran R., Al-Yaari A., Kerr Y.H. Global-scale surface roughness effects at L-band as estimated from SMOS observations. Remote Sensing of Environment. 2016. V. 181. P. 122–136. URL: https://doi.org/10.1016/j.rse.2016.04.006.dfd
  39. Ferrazzoli P., Guerriero L., Wigneron, J.P. Simulating L-band emission of forests in view of future satellite applications. IEEE Transactions on Geoscience and Remote Sensing. 2002. V. 40. P. 2700–2708.
  40. Saleh K., Wigneron J.P., de Rosnay P., Calvet J.C., Kerr Y. Semi-empirical regressions at L-band applied to surface soil moisture retrievals over grass. Remote Sensing of Environment. 2006b. V. 101. P. 415–426.
  41. Wegmuller U., Matzler C. Rough bare soil reflectivity model. IEEE Transactions on Geoscience and Remote Sensing. 1999. V. 37. P. 1391–1395.
  42. Kerr Y.H., Njoku E.G. A semi-empirical model for interpreting microwave emission from semiarid land surfaces as seen from space. IEEE Trans. Geosci. Remote Sensing. GE-28. (3). 1990. P. 384–393.
Дата поступления: 05.08.2024
Одобрена после рецензирования: 16.08.2024
Принята к публикации: 28.08.2024