350 руб
Журнал «Нелинейный мир» №7 за 2009 г.
Статья в номере:
Влияние упругих волн в металлическом рефлекторе на динамику кавитационных пузырьков в фокальной области электрогидравлического литотриптера
Авторы:
О. А. Сапожников - д.ф.-м.н., доцент физического факультета МГУ им. М.В. Ломоносова В. Крейдер - сотр. лаборатории прикладной физики университета штата Вашингтон (Сиэтл, США) М. Р. Бэйли - сотр. лаборатории прикладной физики университета штата Вашингтон (Сиэтл, США)
Аннотация:
Исследовано влияние на кавитацию дополнительных акустических возмущений, обусловленных упругими волнами, возникающими в металлическом рефлекторе.
Страницы: 575-580
Список источников
  1. LingemanJ.E.  Extracorporealshockwavelithotripsy. Development, instrumentation, andcurrentstatus. Urol. Clin. NorthAm., 1997. V. 24. P. 185−211.
  2. Siroky, M.B., Oates, R.D., and Babayan, R.K.  Handbook of urology: diagnosis and therapy. Lippincott: Williams & Wilkins. 2004.
  3. Crum L.A. Cavitation microjets as a contributory mechanism for renal calculi disintegration in ESWL // J. of Urology. 1988. V. 140, P. 1587−1590.
  4. Vogel A., and Lauterborn W. Acoustic transient generation by laser-produced cavitation bubbles near solid boundaries // J. Acoust. Soc. Am. 1988. V. 84. P. 719-731.
  5. Coleman A.J., Choi M.J., and Saunders J.E.  Detection of acoustic emission from cavitation in tissue during clinical extracorporeal lithotripsy // Ultrasound Med. Biol. 1996. V. 22. P. 1079-1087.
  6. Lord Rayleigh. On the pressure developed in a liquid during the collapse of a spherical cavity // Philosophical Magazine. 1917. V. 34. P. 94−98.
  7. Gilmore F.R.  The growth or collapse of a spherical bubble in a viscous compressible liquid. California Institute of Technology. Pasadena, CA. 1952. Repоrt. No. 26-4. P. 1−40.
  8. Акуличев В.А. Пульсации кавитационных полостей // Физика и техника мощного ультразвука. Ч. IV. Т.2: Мощные ультразвуковые поля / под ред. Л.Д. Розенберга. М.: Наука. 1968.
  9. Church C.C. A theoretical study of cavitation generated by an extracorporeal shock wave lithotripter // J. Acoust. Soc. Am. 1989. V. 86. Р. 215-227.
  10. Sapozhnikov O.A., Khokhlova V.A., Bailey M.R., Williams Jr. J.C., McAteer J.A., Cleveland R.O., and Crum L.A.  Effect of overpressure and pulse repetition frequency on cavitation in shock wave lithotripsy // J. Acoust. Soc. Am. 2002. V. 112. No. 3. Pt. 1.Р. 1183−1195.
  11. Vireux J.  P-SV wave propagation in heterogeneous media: Velocity-stress finite difference method //Geophysics.1986.V. 51.No. 4. Р. 889−901.
  12. Sapozhnikov O.A., Maxwell A.D., MacConaghy B., and Bailey M.R. A mechanistic analysis of stone fracture in lithotripsy // J. Acoust. Soc. Am. 2007. V.112. No.2. Р. 1190-1202.
  13. Wang T. and Tang X.  Finite-difference modeling of elastic wave propagation: A nonsplitting perfectly matched layer approach//Geophysics.2003. V. 68. No. 5. P. 1749−1755.
  14. Howard D.D. and Sturtevant B.  In vitro study of the mechanicaleffects of shockwave lithotripsy // Ultrasound Med. Biol. 1997.V. 23. P. 1107-1122.