350 руб
Журнал «Нейрокомпьютеры: разработка, применение» №3 за 2018 г.
Статья в номере:
Атомарное машинное обучение
Тип статьи: научная статья
УДК: 519.67, 519.23:24, 517.5
Авторы:

С.Ю. Еременко − д.т.н., профессор,  директор научно-технологической компании Soliton Scientific Pty (г. Сидней, Австралия)

E-mail: sergei@solitonscientific.com 

Аннотация:

Показано как теория атомарных функций, развивающаяся с начала 1970-х гг., и их AString обобщений могут быть расширены на алгоритмы Машинного Обучения для представления атомарных ядер в алгоритмах опорных векторов, оценки плотности, анализа главных компонентов, локально взвешенной регрессии и быть основой атомарной регрессии, атомарной активирующей функции нейронных сетей и атомарного компьютера. Как вероятностные взвешенные равномерные распределения эти функции связаны с Prouhet–Thue–Morse последовательностями и принципами «справедливой игры», а также допускают быстрые вычисления производных. С помощью программ Matlab, R и Python приведены вычисления сложных регрессий, разграничительных границ и кластеров точных целей, важных для медицинских, военных и инженерных приложений. В сочетании эти методы составляют теорию Атомарного Машинного Обучения, которая расширяет 50-летнюю историю атомарных функций и их обобщений на новые научные области.

Страницы: 13-26
Список источников
  1. Eremenko S.Yu. Atomic Strings and Fabric of Spacetime. Foreign Radioelectronics: Achievements of modern radioelectronics. 2018, Accepted for publication. https://www.researchgate.net/publication/320457739.
  2. Rvachev V.L., Rvachev V.A. About one Finite Function, DAN URSR. A (6). 705–707. 1971.
  3. Rvachev V.L., Rvachev V.A. Non-classical methods in the theory of approximations in boundary value problems. Kiev: Naukova Dumka. 1982. 196 p.
  4. Rvachev V.L. Theory of R-functions and their applications. Kiev: Naukova Dumka. 1982.
  5. Kravchenko V.F., Rvachev V.A. Application of atomic functions for solutions of boundary value problems in mathematical physics. Foreign Radioelectronics // Achievements of modern radioelectronics. 1996. № 8. P. 6–22.
  6. Kravchenko V.F., Kravchenko O.V., Pustovoit V.I, Churikov D.I. Atomic, WA-Systems, and R-Functions Applied in Modern Radio Physics Problems: Part 1. Journal of Communications Technology and Electronics. 2014, V. 59. №10. P. 981–1009. https://www.researchgate.net/publication/298406834. DOI: 10.1134/S1064226914090046.
  7. Kravchenko V.F., Kravchenko O.V., Pustovoit V.I, Pavlikov V.V. Atomic Functions Theory: 45 Years Behind. https://www.researchgate.net/publication/308749839. DOI 10.1109/MSMW.2016.7538216.
  8. Kravchenko V.F. Lectures on the theory of atomic functions and their applications. Moscow: Radiotechnika. 2003.
  9. Kravchenko V.F., Rvachev V.L. Logic Algebra, atomic functions and wavelets in physical applications. Moscow: Fizmatlit. 2009.
  10. Eremenko           S.Yu.          Finite          Element     Methods     in               Mechanics of               Deformable                 Bodies.       Kharkov:    Osnova.     1991.         272p. https://www.researchgate.net/publication/321171685. 
  11. Eremenko S.Yu. Natural Vibrations and Dynamics of Composite Materials and Constructions. Kiev: Naukova Dumka. 1992. 182 p. 
  12. Eremenko S.Yu., Rvachev V.L. A survey of variants of the structural finite-element method // Journal of Mathematical Sciences. 1998. V. 90.  № 2. P. 1917–1922.
  13. Eremenko S.Yu. Combined Non-Archimedean Calculi. Foreign Radioelectronics // Achievements of modern radioelectronics. 1996. № 8. P. 57–65. https://www.researchgate.net/publication/320616255. 
  14. Eremenko S.Yu., Kravchenko V.F., Rvachev V.L. Combined Non-Archimedean Calculi and New Models of Relativistic Mechanics. Foreign Radioelectronics // Achievements of modern radioelectronics. 1997. № 9. P. 26–38. https://www.researchgate.net/publication/320616269.
  15. Gotovac H., Kozulic V, Gotovac B. Space-Time Adaptive Fup Multi-Resolution Approach for Boundary-Initial Value Problems // Computers, Materials and Continua. 2010. 15(3). P. 173–198. https://www.researchgate.net/publication/287948119
  16. Sirodzha I.B. Quantum model and methods of artificial intelligence for solution taking and control. Kiev: Naukova Dumka. 2002. 490 p. 
  17. Kolodyazhni V.M., Rvachev V.A. Atomic functions. Generalizations to the case of several variables and perspective directions of practical application // Cybernetics and Systems Analysis. 2007. V. 43. № 6. P. 155–177.
  18. Fabius J. A probabilistic example of a nowhere analytic C ∞-function. Zeitschrift für Wahrscheinlichkeitstheorie und Verwandte Gebiete, 1966, 5 (2): 173–174, doi:10.1007/bf00536652, MR 0197656.
  19. Hilberg W. Impulse und Impulsfolgen, die durch Integration oder Differentiation in einem veranderten Zeitmastab reproduziert warden. AEU. (25). 1. 1971. P. 39–48.
  20. Palacios-Huerta I. Tournaments, fairness and the Prouhet–Thue–Morse sequence. Economic inquiry, 2012. 50 (3): 848–849. DOI:10.1111/j.1465-7295.2011.00435.x.
  21. Kravchenko V.F., Kravchenko O.V., Konovalov Ya.Yu. Prouhet-Thue-Morse sequence and atomic functions in applications of physics and techniques. Journal of Measurement Science and Instrumentation, 2015, 6(2) : 128-141. https://www.researchgate.net/publication/280316794. DOI: 10.3969/j.issn.16748042.2015.02.005.
  22. Filippov A.T. The Versatile Soliton. Modern Birkhauser Classics. 2000. 261 p.
  23. Bougaev A.A., Urmanov A.M., Gross A.M., Tsoukalas L.H. Method of Key Vectors Extraction Using R-Cloud Classifiers. Springer, 2006. DOI 10.1007/1-4020-5263-4_15. 
  24. Raschka S. Python in Machine Learning. PACKT Publishing, 2016. 
  25. R-documentation on https://www.r-project.org.
  26. Cortes C., Vapnik V. Support-vector networks. Machine Learning. 1995, 20 (3), p.273–297. doi:10.1007/BF00994018.
  27. Cleveland W.S. LOWESS: A program for smoothing scatterplots by robust locally weighted regression. The American Statistician. 1981, 35 (1): 54. doi:10.2307/2683591. JSTOR 2683591.
  28. Data Science and Big Data Analytics: Discovering, Analyzing, Visualizing and Presenting Data. Wiley: EMC Educational Services, 2015. 432 p. 
  29. Machine Learning Course, Stanford University, https://www.coursera.org/learn/machine-learning. 
  30. MATLAB documentation on www.mathworks.com. 
  31. LIGO Gravitational Wave detector experiment on https://losc.ligo.org/events/GW150914/, https://losc.ligo.org/s/events/GW150914/GW150914_tutorial.html.
  32. Scheglov E.G., Arutynov P.A. Non-Archimedean Calculus in the Mathematical Modelling of Digital ICs. Russian Microelectronics. 2002. V. 31.  № 6. P. 384–395.
  33. Arutynov P.A. Non-Archimedean Calculi in Theoretical Metrology. Izm. Tekh. (Metrologia). 2001. № 2 P. 3–18.
  34. Varvak M. Ellipsoidal/radial basis functions neural networks enhanced with the Rvachev function method in application problems // Engineering Applications of Artificial Intelligence. 2015. V. 38. P. 111–121. DOI: 10.1016/j.engappai.2014.09.017.
Дата поступления: 18 сентября 2017 г.