350 руб
Журнал «Нейрокомпьютеры: разработка, применение» №4 за 2013 г.
Статья в номере:
Обучаемые марковские модели в задачах оптимизации порядка предъявления психологических тестов
Ключевые слова:
марковские модели
психологическое тестирование
идентификация марковских моделей
система поддержки принятия решений
Авторы:
Л.С. Куравский - д.т.н., профессор, декан, факультет «Информационные технологии», Московский городской психолого-педагогический университет. E-mail: l.s.kuravsky@gmail.com
А.А. Марголис - к. психол. н., первый проректор, Московский городской психолого-педагогический университет. E-mail: margolisaa@mgppu.ru
П.А. Мармалюк - к.т.н., доцент, факультет «Информационные технологии», Московский городской психолого-педагогический университет. E-mail: ykk.mail@gmail.com
Г.А. Юрьев - аспирант, факультет «Информационные технологии», Московский городской психолого-педагогический университет. E-mail: grinch89@mail.ru
П.Н. Думин - аспирант, факультета «Информационные технологии», Московский городской психолого-педагогический университет. E- mail: dumin.pn@gmail.com
Аннотация:
Представлена концепция системы поддержки принятия решений, предназначенной для оптимизации порядка предъявления заданий психологических тестов и построенной на использовании обучаемых структур в форме марковских моделей с непрерывным временем. Диагностические выводы построены на основе уточняющихся в процессе тестирования вероятностных оценок принадлежности испытуемых к различным группам. Выбор очередного задания определяется для каждого испытуемого индивидуально, опираясь на результаты выполнения предыдущих расчётов дифференцирующей способности ещё не предъявленных заданий.
Страницы: 28-38
Список источников
- Galushkin A.I. Nejjronnye seti. Osnovy teorii. M.: Gorjachaja linija - Telekom. 2010.
- Golovko V.A. Nejjronnye seti: obuchenie, organizacija i primenenie. Ucheb. posobie. M.: IPRZHR. 2001.
- Dzhekson P. Vvedenie v ehkspertnye sistemy: Ucheb. posobie. M.: Viljams. 2001.
- Dzhons M.T. Programmirovanie iskusstvennogo intellekta v prilozhenijakh. M.: DMK Press. 2004.
- Kramer G. Matematicheskie metody statistiki. M.: Mir. 1976. 648 s.
- Kuravskijj L.S., Baranov S.N. Primenenie nejjronnykh setejj dlja diagnostiki i prognozirovanija ustalostnogo razrushenija tonkostennykh konstrukcijj // Nejjrokompjutery: razrabotka i primenenie. 2001. № 12. S. 47-63.
- Kuravskijj L.S., Baranov S.N. Sintez setejj Markova dlja prognozirovanija ustalostnogo razrushenija // Nejjrokompjutery: razrabotka, primenenie. 2002. № 11. S. 29-40.
- Kuravskijj L.S., Baranov S.N., Kornienko P.A.Obuchaemye mnogofaktornye seti Markova i ikh primenenie dlja issledovanija psikhologicheskikh kharakteristik // Nejjrokompjutery: razrabotka, primenenie. 2005. № 12. S. 65-76.
- Kuravskijj L.S., Baranov S.N., JUrev G.A.Sintez i identifikacija skrytykh markovskikh modelejj dlja diagnostiki ustalostnogo razrushenija // Nejjrokompjutery: razrabotka, primenenie. 2010. № 12. S. 20-36.
- Kuravskijj L.S., Margolis A.A., JUrev G.A.Psikhologicheskijj trening na osnove nejjrosetevojj tekhnologii // Nejjrokompjutery: razrabotka, primenenie. 2009. № 9. S. 20-26.
- Kuravskijj L.S., JUrev G.A. Ispolzovanie markovskikh modelejj pri obrabotke rezultatov testirovanija // Voprosy psikhologii. 2011. № 2. S. 98-107.
- Ljuger Dzh. F. Iskusstvennyjj intellekt: strategii i metody reshenija slozhnykh problem. Izd. 4-e. Per. s angl. M.: Viljams. 2003.
- Ovcharov L.A. Prikladnye zadachi teorii massovogo obsluzhivanija. M.: Mashinostroenie. 1969. 324 c.
- Psikhodiagnostika v Rossii cherez 5 let // Psikhologija. ZHurnal Vysshejj shkoly ehkonomiki. 2008. № 4. T. 5. S. 44-85.
- Saati T.L. EHlementy teorii massovogo obsluzhivanija i ejo prilozhenija. M.: LIBROKOM. 2010. 520 s.
- Kuravsky L.S., Baranov S.N. Condition monitoring of the structures suffered acoustic fatigue failure and forecasting their service life. Proc. Condition Monitoring 2003, Oxford, United Kingdom. July 2003. P. 256-279,
- Kuravsky L.S., Baranov S.N. Neural networks in fatigue damage recognition: diagnostics and statistical analysis. Proc. 11th International Congress on Sound and Vibration, St.-Petersburg, Russia. July 2004. P. 2929-2944,
- Kuravsky L.S., Baranov S.N. The concept of multifactor Markov networks and its application to forecasting and diagnostics of technical systems. In: Proc. Condition Monitoring 2005. Cambridge, United Kingdom. July 2005. P. 111-117.
- Kuravsky L.S., Baranov S.N., Yuryev G.A. Synthesis and identification of hidden Markov models based on a novel statistical technique in condition monitoring. In: Proc. 7th International Conference on Condition Monitoring & Machinery Failure Prevention Technologies, Stratford-upon-Avon, England. June 2010.
- http:// www.solver.com.