350 руб
Журнал «Нанотехнологии: разработка, применение - XXI век» №2 за 2025 г.
Статья в номере:
Сверхскоростные преобразователи сигналов: архитектуры, технологии, устройства
Тип статьи: научная статья
DOI: https://doi.org/10.18127/j22250980-202502-06
УДК: 621.3.087.92+621.382.049.77
Авторы:

Ю.В. Кольцов1

1 Нижегородский научно-исследовательский приборостроительный институт (г. Нижний Новгород, Россия)
1 koltzovyv@mail.ru

Аннотация:

Постановка проблемы. Использование сверхскоростных аналого-цифровых преобразователей (АЦП) и цифроаналоговых преобразователей (ЦАП) обеспечивает прямое преобразование сверхширокополосных сигналов. Работа посвящена разработке сверхскоростных преобразователей сигналов для различных сверхширокополосных систем.

Цель. Рассмотреть методы построения аналого-цифровых и цифро-аналоговых преобразователей сигналов и устройств на их основе.

Результаты. Показана реализация различных архитектур и технологий АЦП–ЦАП, позволяющих обеспечить самые высокие значения параметров новейших сверхширокополосных систем.

Практическая значимость. Представленные результаты относятся к серийным разработкам сверхскоростных АЦП–ЦАП или готовым к массовому производству.

Страницы: 55-69
Для цитирования

Кольцов Ю.В. Сверхскоростные преобразователи сигналов: архитектуры, технологии, устройства // Нанотехнологии: разработка, применение – XXI век. 2025. Т. 17. № 2. С. 55–69. DOI: https://doi.org/ 10.18127/ j22250980-202502-06

Список источников
  1. Mosharafian N., Borelli C. An Introduction to Direct RF Sampling in a World Evolving Towards Chiplets – Part 1. Design & Reus. 2024. September 2.
  2. Advantages of Direct RF Sampling Architectures. National Instruments. Updated 2024. November 22.
  3. Siafarikas D., Volakis J.L. Toward Direct RF Sampling: Implications for Digital Communications. IEEE Microwave Magazine. 2020. V. 21. № 9. P. 43–52.
  4. An Adaptable Direct RF-Sampling Solution. Xilinx, White Paper. 2019. February 20. WP489 (v1.1).
  5. Neu T. Direct RF conversion: From vision to reality. Texas Instruments, White Paper. 2015. May.
  6. Mashhour A., Domino W., Beamish N. On the Direct Conversion Receiver – A Tutorial. Microwave Journal. 2001. June 1.
  7. Delos P. Advanced Technologies Pave the Way for New Phased Array Radar Architectures. Analog Devices. 2016. November 1.
  8. Воскресенский Д.И., Добычина Е.М. Цифровые антенные решетки бортовых систем. М.: Радиотехника. 2020. 240 с.
  9. Kappes M. All-Digital Antennas for mmWave Systems. Microwave Journal. 2019. June 13.
  10. Dinis D.C., Olivera A., Vieira J. Towards an All-Digital Antenna Array Transmitter. PhD Forum, Switzerland. 2016. August 31.
  11. Annino B. Selecting the Best ADC for Radar Phased Array Applications: Part 1. Microwave Journal. 2024. January 12.
  12. Annino B. Selecting the Best ADC for Radar Phased Array Applications: Part 2. Microwave Journal. 2024. May 13.
  13. Murmann B. ADC Performance Survey. Data collection from the ISSCC & VLSI Circuit Symposium. 1997–2024. GitHub, Inc., 2025.
  14. Murmann B., Hoefflinger B. Eds. NANO-CHIPS 2030: On-Chip AI for an Efficient Data-Driven World. Taschenbuch. 2021. July 16. 615 p.
  15. 56GSa/s 8-bit Analog-to-Digital Converter. Fujitsu Microelectronics America. SMS-FS-21364-03/2010. 2010. 2 p.
  16. 56GSa/s 8-bit ADC Development Kit. Fujitsu Microelectronics America. SMS-FS-21365-03/2010. 2010. 2 p.
  17. Романова И. АЦП и ЦАП компании Fujitsu – новые технологии, высокая производительность. Электроника: НТБ. 2014. № 1. С. 96–100.
  18. Dedic I. 56Gs/s ADC Enabling 100GbE. Fujitsu Microelectronics Europe. OFC2010/OThT6 – 56 GS/s ADC: Enabling 100GbE. 2009. 27 р.
  19. LUKE-ES Analog to Digital Converter. Fujitsu Semiconductor Europe. Factsheet LUKE-ES 55–65 GSa/s 8 bit ADC. SEU-C63-29MAR2012. 2 р.
  20. Analog to Digital Converter evaluation board. Fujitsu Semiconductor Europe. Factsheet LUKE-DK / LUKE-DK-SOCKET 55–65 GSa/s 8 bit ADC. FSEU-C64-29MAR2012. 2 р.
  21. ROTTA Test Chip and Development Kit. Fujitsu Semiconductor Europe. Factsheet ROTTA Test chip and Development Kit 38–92 GSa/s 8-bit ADC family. FSEU-C66-10SEPT13. 2 р.
  22. Fujitsu Demonstrates First ADC in Family of Low-Power, High-Speed, 28nm CMOS Converters. PR Newswire. 2013. March 13.
  23. У Fujitsu готова первая модель нового семейства АЦП, выпускаемых по 28-нанометровой технологии CMOS. IXBT.com. 2013. March 18.
  24. Dot Hill Introduces Versatile and Powerful Next Generation Architecture for High-Bandwidth Cloud Services and Vertical Market. GlobeNewswire. 2013. October 7.
  25. Clarke P. High-Speed Converters Aid Record Terabit Field Trial. EE Times. 2015. July 2.
  26. Made in IBM Labs: Scientists Set New Speed Record for Big Data. PR Newswire. 2014. February 13.
  27. Kull L., Toifl T., Schmatz M. et. al. A 90 GS/s 8b 667 mW 64xInterleaved SAR ADC in 32 nm Digital SOI CMOS. 2014 IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC). 2014. 9–13 February. San Francisco. USA.
  28. https://infoscience.epfl.ch/entities/publication/8f7429d4-f88e-4fb8-8613-09dcdbce84f2
  29. Semtech announces ultra-high speed ADC/DAC cores. Lightwave. 2014. March 5.
  30. Semtech Announces Ultra-High Speed ADC and DAC for Advanced Communication Systems. 2014. March 3. https://www.eejournal.com/industry_news/20140303-02/
  31. We are ushering in a new era of Digital Data Conversion. https://www.iqanalog.com/technology
  32. New Era of Digital Beamforming Antenna Systems. Microwave Journal. 2019. June 27.
  33. IQ-Analog. Microwaves &RF. 2020. December. V. 59. № 12. P. 41.
  34. DARPA has Awarded IQ-Analog Corporation a $4.5M Contract to Develop and Validate a New Analog to Digital Converter (ADC) Architecture. https://www.prweb.com/releases/2016/03/prweb13265548.htm
  35. Antenna Processor Enables All-Digital Radar, EW and Communications. Microwave Journal. 2021. September 13. Р. 46. September Supplement 2021. Military & Aerospace. V. 64. Edition: 09 Sup.
  36. Why Direct RF Sampling is a Game Changer. Microwave Journal. 2023. March 30.
  37. All-Digital Antennas for mmWave Systems. IQ-Analog. 2019. June 13.
  38. IQ-Analog Adopts Diakopto's ParagonX Platform for Next-Generation 5G Wireless Communications ICs. Design & Reuse. 2021. July 19.
  39. Modular, High Speed Prototyping Platform. Microwave Journal. 2021. January 14.
  40. Executive Interview: Matthias Frei, Founder and CEO, Micram. Microwave Journal. 2021. January 15.
  41. Real-Time Silicon Development Systems. Keysight. 2025.
  42. https://www.jariettech.com/, https://www.jariettech.com/electra
  43. Jariet Technologies creates expanded Electra direct RF-sampling ADC/DAC transceiver family based upon their industry leading Electra-MA 64-GSPS product to better serve VHF to Ka-band markets. Jariet Technologies. 2024. June 5.
  44. Analog to Digital Converter (ADC) IP.
  45. https://www.alphacoreinc.com/en/analog-mixed-signal-and-rf-solutions/products
  46. ODT-ADS-7B64G-3. Omni Design Technologies, Inc., 2025.
  47. https://www.omnidesigntech.com/product/odt-ads-7b64g-3/
  48. IP Product Catalog 2025. https://www.omnidesigntech.com/products/product-selection-table/
  49. UCIe based 8–bit 48–Gsps Transceiver (ADC/DAC/PLL/UCIe). Design & Reuse. 2024. July 22.
  50. Kull L., Pliva J., Toifl T. et. al. Implementation of Low-Power 6–8 b 30–90 GS/s Time-Interleaved ADCs With Optimized Input Bandwidth in 32 nm CMOS. IEEE Journal of Solid State Circuits. 2016. March. V. 51. № 3. P. 636–648.
  51. Kull L., Luu D., Menolfi C. et. al. F 24-to-72 Gs/s 8b time-interleaved SAR ADC with 2.0-to-3.3 pJ/conversion and >30 dB SNDR at nyquist in 14 nm CMOS FinFET. 2018 IEEE Journal of Solid State Circuits Conference. 11–15 February 2018. San Francisco. USA.
  52. Kim G., Kull L., Luu D. et. al. A 161-mW 56-Gb/s ADC–Based Discrete Multitone Wireline Receiver Data-Path in 14-nm FinFET. IEEE Journal of Solid State Circuits. 2020. January. V. 55. № 1. P. 38–48.
  53. Cao J., Cui D., Nazemi A. et. al. A transmitter and receiver for 100Gb/s coherent networks with integrated 4×64 GS/s 8b ADCs and DACs in 20 nm CMOS. IEEE ISSCC Dig. Tech. Papers. 2017. February. P. 484–485.
  54. Nguyen R.L., Castrillon A.M., Fan A. et. al. A Highly Reconfigurable 40–97 GS/s DAC and ADC with 40 GHz AFE Bandwidth and Sub–35 fJ/conv–step for 400 Gb/s Coherent Optical Applications in 7 nm FinFET. 2021 IEEE Int. Solid–State Circuits Conference, 13–22 February, San Francisco.
  55. Luan J., Zheng X., Wu D. et. al. A 56 GS/s 8 Bit Time–Interleaved ADC in 28 nm CMOS. Electronics. 2022. V. 11. № 5. P. 688.
  56. Imec Unveils Breakthrough ADC Architecture for Very High–Speed Wireline Applications, Excelling in Area & Power Efficiency. Imec. 2024. February 24.
  57. Imec Reports 2 Record-Breaking Ringamp ADCs for 5G Base Stations, Mobile Handsets. Microwave Journal. 2019. February 21.
  58. Van J. Driessche Working Toward Next-Gen Wireless Networks at 100 GHz and Beyond. Microwaves & RF. 2022. February 03.
  59. Imec introduces best-in-class ADCs for base stations and smartphones, propelling beyond–5G communications. Imec. 2024. June 19.
  60. Joosting J.-P. Real-Time Oscilloscopes Achieve 70 GHz Performance. Microwave Engineering Europe. 2013. March 25.
  61. Патент 20140225591 США. МПК G01 R23/14 (2006.01). Test and Measurement Instrument Including Asynchronous Time–Interleaved Digitizer Using Harmonic Mixing / D.G. Knierim, J.S. Lamb. 2014.
  62. Тектроникс применяет технологию 9HP SiGe компании ИБМ в осциллографах с полосой пропускания 70 ГГц следующего поколения.
  63. http://ru.tek.com/document/news-release/tektronix-adopt-ibm’s-9hp-sige-technology-next-generation-70ghz-oscilloscopes
  64. Keysight Technologies Infiniium UXR–Series Oscilloscopes. Light Wave Direct. 2019. February 20.
  65. Keysight Technologies (Agilent): Осциллографы реального времени серии Infiniium UXR. Каталог фирмы Акметрон (Москва), 2024.
  66. Flaherty N. 65 GHz full 12bit oscilloscope for debug and test. eeNews Europe. 2023. September 8.
  67. Wickham B. Industry’s First COTS Card with 64 GSps ADC/DAC Direct RF Sampling Is Shipping. Annapolis Micro Systems. 2023. April 3.
  68. Renesas Partners with Jariet Technologies to Bolster Wireless Transceiver Solutions Portfolio. Microwave Journal. 2022. October 3.
  69. Trinh T. Heterogeneous Integration Enables Direct Conversion RF to Digital Processing at the Tactical Edge. Microwave Journal. 2022. September 10. V. 65. № 9. September Supplement 2022. Military and Aerospace. P. 48–50.
  70. Викулов И. Гетерогенная интеграция – новый этап развития интегральной СВЧ-электроники. Электроника: НТБ. 2016. Вып.1.
  71. Trusted Onshore Facility Brings Latest Technology to Mission–Critical Applications. Microwave Journal. 2022. December 13.
  72. Mercury Announces Early Access Program for New Direct RF Multi-Chip Module Powered by AMD Versal Adaptive SoCs. Microwave Journal. 2024. March 18.
  73. Mercury Unveils the Industry’s First Signal Processing Board To Feature Intel’s Latest Direct RF Technology. Microwave Journal. 2023. January 2.
  74. Maliniak D. Mercury Drops First Signal-Processing Board with Intel’s Latest Direct RF Technology. Microwaves & RF. 2023. January 24.
  75. Mercury Releases DRF2580 Direct RF FPGA System on Module Circuit Cellar. 2024. March 03.
  76. https://circuitcellar.com/newsletter/mercury-releases-drf2580-direct-rf-fpga-system-on-module/
  77. Mercury Introduces Direct RF System-On-Module Powered by Intel Agilex FPGA. Microwave Journal. 2024. January 22.
  78. Mercury Introduces New Small Form Factor Digital Signal Processing Module Powered by Altera Agilex FPGAs. Microwave Journal. 2024. September 16.
  79. GlobeNewswire. https://www.globenewswire.com/NewsRoom/AttachmentNg/ed700210-8665-49fb-89d8-993023fc563a
  80. Mercury Introduces Digital Signal Processing Products Powered by Altera’s Newest Agilex™ 9 FPGAs. Microwave Journal. 2024. December 12.
  81. Agilex™ 9 FPGA and SoC FPGA.
  82. https://www.intel.com/content/www/us/en/products/details/fpga/agilex/9.html
  83. AMD Introduces Versal RF Series Adaptive SoCs. Microwave Journal. 2024. December 10.
Дата поступления: 24.01.2024
Одобрена после рецензирования: 07.02.2024
Принята к публикации: 04.03.2024