350 руб
Журнал «Электромагнитные волны и электронные системы» №8 за 2017 г.
Статья в номере:
Разработка вычислительного комплекса для анализа приливного ускорения в условиях микрогравитации
Тип статьи: научная статья
УДК: 004.67+523.3
Авторы:

Б.М. Логинов – д.ф.-м.н., профессор, Калужский филиал МГТУ им. Н.Э. Баумана

E-mail: bmloginov@mail.ru

А.П. Коржавый – д.т.н., профессор, Калужский филиал МГТУ им. Н.Э. Баумана E-mail: fn2kf@list.ru

В.И. Стрелов – д.ф.-м.н., директор НИЦ «Космическое материаловедение» 

Института кристаллографии имени А.В. Шубникова РАН (г. Калуга)

E-mail: fn1kf@list.ru

М.Б. Логинова – к.ф.-м.н., доцент, Калужский филиал МГТУ им. Н.Э. Баумана

E-mail: bmloginov@mail.ru

Е.В. Маслов – магистрант, Калужский филиал МГТУ им. Н.Э. Баумана

E-mail: fn1kf-evm@list.ru

С.С. Стрельченко – д.т.н., профессор, Калужский филиал МГТУ им. Н.Э. Баумана E-mail: fn1kf@list.ru

Аннотация:

Разработан программно-вычислительный комплекс для расчета и графического представления результатов временных зависимостей приливного ускорения обусловленного спецификой гравитационного взаимодействия в системе Солнце-Земля-Луна. Проведено описание пользовательского окна интерфейса и описание функциональных возможностей разработанного программно-вычислительного комплекса.

Страницы: 51-59
Список источников
  1. Bizzarri M., Monici M., Loon J.W. How microgravity affects the biology of living systems // BioMed Research International. 2015. V. 2015. P. 1−4. ID 863075. http://dx.doi.org/10.1155/2015/863075.
  2. Klein-Nulend J., Bacabac R.G., Veldhuijzen J.P., Loon J.W. Microgravity and bone cell mechanosensitivity // Advances in Space Research. 2003. V. 32. № 8. P. 1551−1559.
  3. Stiles P.J., Fletcher D.F. The effect of gravity on the rate of a simple liquid-state reaction in a small, unstirred cylindrical vessel // Physical Chemistry & Chemical Physics. 2001. V. 3. № 9. P. 1617−1621.
  4. Papaseit C., Pochon N., Tabony J. Microtubule self-organization is gravity-dependent // Proceedings of the National Academy of Sciences of the United States of America. 2000. V. 97. № 15. P. 8364−8368.
  5. Grimm D., Wehland M., Pietsch J. Growing tissues in real and simulated microgravity: new methods for tissue engineering // Tissue Engineering Part B: Reviews. 2014. V. 20. № 6. P. 555−566.
  6. Convertino V.A. Consequences of cardiovascular adaptation to spaceflight: implications for the use of pharmacological countermeasures // Gravity Space Biology Bull. 2005. V. 18. P. 59−69.
  7. Bajotto G., Shimomura Y. Determinants of disuse - induced skeletal muscle atrophy: exercise and nutrition countermeasures to prevent protein loss // J. Nutr. Sci. Vitaminol (Tokyo). 2006. V. 52. P. 233−247.
  8. Paul A.L., Levine H.G., McLamb W., Norwood K.L., Reed D., Stutte G.W., Wells H.W., Ferl R.J. Plant molecular biology in the space station ere: utilization of KSC fixation tubes with RNALater // Acta Astronaut. 2005. V. 56. № 6. P. 623−628.
  9. Ulbrich C. Characterization of human chondrocytes exposed to simulated microgravity // Cellular Physiology and Biochemistry. 2010. V. 25. № 4−5. P. 551−560.
  10. Stutte G.W., Monje O., Goins G.D., Tripathy B.C. Microgravity effects on thylakoid, single leaf, and whole canopy photosynthesis of dwarf wheat // Planta. 2005. V. 223. P. 46−56.
  11. Grimm D., Wise P., Lebert M., Richter P., Baatout S. How and why does the proteome respond to microgravity? // Expert Review of Proteomics. 2011. V. 8. № 1. P. 13−27.
  12. Barzegari A., Saei A.A. An update to space biomedical research: tissue engineering in microgravity bioreactors // BioImpacts. 2012. V. BI 2. P. 23−32.
  13. Becker J.L., Souza G.R. Using space-based investigations to inform cancer research on Earth // Nat. Rev. Cancer. 2013. V. 13. P. 315−327.
  14. Klaus D.M., Howard H.N. Antibiotic efficacy and microbial virulence during space flight // Trends Biotechnol. 2000. V. 24. P. 131−136.
  15. Pache C., Kuhn J., Westphal K. Digital holographic microscopy real-time monitoring of cytoarchitectural alterations during simulated microgravity // Journal of Biomedical Optics. 2010. V. 15. № 2. P. 21−34.
  16. Buravkova L.B., Rykova M.P., Grigorieva V., Antropova E.N. Cell interactions in microgravity: cytotoxic effects of natural killer cells in vitro // J. Gravit. Physiol. 2004. V. 11. № 2. P. 177−180.
  17. Cogoli-Greuter M. The lymphocyte story – an overview of selected highlights on the in vitro activation of human lymphocytes in space // Microgravity Science and Technology. 2014. V. 25. № 6. P. 343−352.
  18. Battista N., Meloni M.A., Bari M. 5-Lipoxygenasedependent apoptosis of human lymphocytes in the international space station: data from the ROALD experiment // The FASEB Journal. 2012. V. 26. № 5. P. 1791−1798.
  19. Paulsen K., Tauber S., Dumrese C., Bradacs G., Simmet D.M., Gölz N., Hauschild S., Raig C., Engeli S. Regulation of ICAM-1 in cells of the monocyte/macrophage system in microgravity // BioMed Research International. 2015. Article ID 538786. 18 p.
  20. Thiel C.S., Paulsen K., Bradacs G. Rapid alterations of cell cycle control proteins in human T lymphocytes in microgravity // Cell Communication and Signaling. 2012. V. 10. № 1. P. 124−136.
  21. Doty S.B., Stiner D., Telford W.G. The effect of spaceflight on cartilage cell cycle and differentiation // J. Gravitational Physiol. 1999. V. 6. P. 89−90.
  22. Pardo S.J., Patel M.J., Sykes M.C. Simulated microgravity using the random positioning machine inhibits differentiation and alters gene expression profiles of 2T3 preosteoblasts // Am. J. Physiology - Cell Physiology. 2005. V. 288. № 6. P. C1211−C1221.
  23. Stutte G.W., Monje O., Hatfield R.D., Paul A.L., Ferl R.J. Simone C.G. Microgravity effects on leaf morphology, cell structure, carbon metabolism and mRNA expression of dwarf wheat // Planta. 2006. V. 224. P. 1038−1049.
  24. Nislow C., Lee A.Y., Allen P.L., Giaever G., Smith A., Gebbia M., Stodieck L.S., Hammond J.S., Birdsall H.H. Genes required for survival in microgravity revealed by genome-wide yeast deletion collections cultured during spaceflight // BioMed Research International. 2015. Article ID 976458. 10 p.
  25. Ward N.E., Pellis N.R., Semyon A. Risin S.A., Risin D. Microgravity-induced changes in gene expression in activated to lymphocytes involve multiple regulatory pathways // Gravitational and Space Biology. 2006. V. 19. P. 151−152.
  26. Hammond T.G., Lewis F.C., Goodwin T.J., Linnehan R.M., Wolf D.A., Hire K.P., Campbell W.C., Benes E., O’Reilly K.C., Globus R.K. Gene expression in space // Nat. Med. 1999. V. 5. P. 359−384.
  27. Salmi M.L., Roux S.J. Gene expression changes induced by space flight in single-cells of the fern ceratopteris richardii // Planta. 2008. V. 229. P. 151−159.
  28. Wilson J.W., Ott C.M., Höner K., Ramamurthy R., Quick L., Porwollik S., Cheng P., McClelland M., Tsaprailis G., Radabaugh T. Space flight alters bacterial gene expression and virulence and reveals a role for global regulator Hfq // Proc. Natl. Acad. Sci. 2007. V. 104. P. 16299−16304.
  29. Blaber E., Sato K., Almeida E. Stem cell health and tissue regeneration in microgravity // Stem Cells and Development. 2014. V. 23. Supp. 1. DOI: 10.1089/scd.2014.0408.
  30. Blaber E.A. Mechanical unloading of bone in microgravity reduces mesenchymal and hematopoietic stem cell - mediated tissue regeneration // Stem Cell Res. 2014. V. 13. P. 181−201.
  31. Finkelstein H., Blaber E., Dvorochkin N., Globus R.K., Burns B.P., Almeida E.A. Spaceflight reduces the wound healing potential of stem cell derived keratinocytes by decreasing migration // Gravitation Space Biology. 2011. V. 26. P. 278−289.
  32. Meng R., Xu H.Y., Di S.M. Human mesenchymal stem cells are sensitive to abnormal gravity and exhibit classic apoptotic features // Acta Biochimica et Biophysica Sinica. 2011. V. 43. № 2. P. 133−142.
  33. Chen J.C., Jacobs C.R. Mechanically induced osteogenic lineage commitment of stem cells // Stem Cell Research and Therapy. 2013. V. 4. P. 107−115.
  34. Zhang X., Nan Y., Wang H. Model microgravity enhances endothelium differentiation of mesenchymal stem cells // Naturwissenschaften. 2013. V. 100. № 2. P. 125−133.
  35. Bizzarri M., Cucina A., Palombo A., Masiello M. Gravity sensing by cells: Mechanisms and theoretical grounds // Rendiconti Lincei. 2014. V. 25. № 1. P. 29−38.
  36. Lewis M.L. The cytoskeleton in spaceflown cells: an overview // Gravitational and Space Biology Bulletin. 2004. V. 17. P. 1−11.
  37. Vorselen D., Roos W.H., McKintosh F.C., Wuite G.J., Loon J.W. The role of the cytoskeleton in sensing changes in gravity by nonspecialized cells. – FASEB Journal. 2014. V. 28. № 2. P. 536−547.
  38. Nabavi N. Effects of microgravity on osteoclast bone resorption and osteoblast cytoskeletal organization and adhesion // Bone. 2011. V. 49. P. 965−974.
  39. Meloni M.A., Galleri G., Pani G., Saba A., Pippia P., Cogoli-Greuter M. Space flight affects motility and cytoskeletal structures in human monocyte cell line J-111 // Cytoskeleton. 2011. V. 68. № 2. P. 125−137.
  40. Monici M., Fusi F., Paglierani M. Modeled gravitational unloading triggers differentiation and apoptosis in preosteoclastic cells // Journal of Cellular Biochemistry. 2006. V. 98. № 1. P. 65−80.
  41. Jessup J.M., Frantz M., Sonmez-Alpan E., Locker J., Skena K., Waller H., Battle P., Nachman A., Weber M.E. Microgravity culture reduces apoptosis and increases the differentiation of a human colorectal carcinoma cell line // In Vitro Cell. Dev. Biol. Anim. 2000. V. 36. P. 367−373.
  42. Paulsen K., Thiel C., Timm J. Microgravity-induced alterations in signal transduction in cells of the immune system // Acta Astronautica. 2010. V. 67. № 9−10. P. 1116−1125.
  43. Fitzgerald W., Chen S., Walz C., Zimmerberg J., Margolis L., Grivel J.C. Immune suppression of human lymphoid tissues and cells in rotating suspension culture and onboard the international space station // In Vitro Cell. Dev. Biol. Anim. 2009. V. 45. P. 622−632.
  44. Wuest S.L., Richard S., Walther I. A novel microgravity simulator applicable for three-dimensional cell culturing // Microgravity Science and Technology. 2014. V. 26. № 2. P. 77−88.
  45. Paul A.-L., Zupanska A.K., Schultz E.R., Ferl R.J. Organ-specific remodeling of the arabidopsis transcriptome in response to spaceflight // BMC Plant Biol. 2013. V. 13. P. 112−118.
  46. Стрелов В.И., Захаров Б.Г., Безбах И.Ж., Сосфенов Н.И. Кристаллизация белка лизоцима в прецизионно-управляемом градиенте температуры // Кристаллография. 2008. Т. 53. № 1. С. 145−148. 6.
  47. Стрелов В.И., Захаров Б.Г., Артемьев В.К. Влияние ориентации вектора гравитации относительно фронта кристаллизации на микро- и макро- однородность кристаллов полупроводников, выращенных в земных и космических условиях // Поверхность. Рентгеновские, синхротронные и нейтронные исследования. 2009. № 2. С. 25−31. 4.
  48. Логинов Б.М., Проскурнин А.Н., Вершинин Е.В. Закономерности процессов движения дислокаций через ансамбли дислокаций леса и точечкых препятствий в условиях одновременного действия статической и циклической нагрузки // физика твердого тела. 2002. Т. 44. № 10. С. 1799−1801. 10.
  49. Логинов Б.М., Толстых С.В. Закономерности деформационного упрочнения, обусловленного композиционными ансамблями дислокаций леса и точечных препятствий // Кристаллография. 1993. Т. 38. № 5. С. 26−33. 9.
  50. Логинов Б.М., Дегтярев В.Т., Тяпунина Н.А. Моделирование движения дислокаций через лес колеблющихся дислокаций с учетом дальнодействующих полей напряжений в кристаллах м решеткой NACL // Кристаллография. 1988. Т. 33. № 1. С. 163−16. 8.
  51. Buravkova L.B. Problems of the gravitational physiology of a cell // Human Physiology. 2010. V. 36. № 7. P. 746−753.
  52. Захаров Б.Г., Стрелов В.И., Осипьян Ю.А. Проблемы, перспективы и альтернативы выращивания монокристаллов полупроводников в космосе // Поверхность. Рентгеновские, синхротронные и нейтронные исследования. 2009. № 2. С. 3−10. 7.
  53. Стрелов В.И., Куранова И.П., Захаров Б.Г., Волошин А.Э. Космическая кристаллизация: результаты и перспективы // Кристаллография. 2014. Т. 59. № 6. С. 863−872. 4.
  54. Прохоров И.А., Захаров Б.Г., Стрелов В.И., Ратников В.В., Шульпина И.Л. Концентрация и структурные неоднородности в монокристаллах GE(GA), выращенных в условиях, моделирующих возмущающие факторы микрогравитации // Поверхность. Рентгеновские, синхротронные и нейтронные исследования. 2005. № 6. С. 23−27. 6.
  55. Коржавый А.П., Логинов Б.М., Логинова М.Б., Белов Ю.С. Исследование свойств полимерных композиционных материалов на основе углеродных волокон и нанотрубок // Нанотехнологии: разработка и применение – XXI век. 2014. Т. 6. № 1. С. 34−46. 4.
  56. Korzhavyi A.P., Loginov B.M., Loginova M.B., Maramygin K.V., Fedoseev I.V. Simulation diamond whiskers synthesis processes under soft conditions // Наукоемкие технологии. 2013. Т. 14. № 7. 004−019. 5.
  57. Логинов Б.М., Еремеев А.В. Моделирование движения дислокаций через гибкий и реагирующий лес дислокаций в области критической плотности дислокаций леса // Физика твердого тела. 1986. Т. 28. № 6. С. 1896−1898. 9.
  58. Todd P. Gravity-dependent phenomena at the scale of the single cell // ASGSB Bulletin. 19989. V. 2. P. 95−113.
  59. Hoson T., Soga K., Mori R., Asiki M., Nakamura Y., Wakabayashi K., Kamisaka S. Stimulation of elongation growth and cell wall loosening in rice coleoptiles under microgravity conditions in space // Plant Cell Physiology. 2002. V. 43. P. 1067−1071.
  60. Damm T.B., Walther I., Wuest S.L., Sekler J., Egli M. Cell cultivation under different gravitational loads using a novel random positioning incubator // Biotechnology and Bioengineering. 2014. V. 111. № 6. P. 1180−1190.
  61. Tabony J., Rigotti N., Glade N., Cortes S. Effect of weightlessness on colloidal particle transport and segregation in selforganising microtubule preparations // Biophysical Chemistry. 2007. V. 127. № 3. P. 172−180.
  62. Мельхиор П. Земные приливы. М.: Мир. 1968. 482 с.
  63. http://ssd.jpl.nasa.gov/?ephemerides.
Дата поступления: 16 августа 2017 г.