350 руб
Журнал «Динамика сложных систем - XXI век» №1 за 2016 г.
Статья в номере:
Анализ развития математического моделирования транспорта и перспективы использования клеточных автоматов в решении задач средних и крупных городов
Авторы:
О.В. Логиновский - д.т.н., профессор, зав. кафедрой информационно-аналитического обеспечения управления в социальных и экономических системах, Южно-Уральский государственный университет (г. Челябинск). E-mail: iaou@susu.ac.ru
А.А. Шинкарев - аспирант, кафедра информационно-аналитического обеспечения управления в социальных и экономических системах, Южно-Уральский государственный университет (г. Челябинск). E-mail: sania.kill@mail.ru
Аннотация:
Обоснована необходимость математического моделирования транспортных потоков, приведены основные этапы развития математического моделирования транспорта и разработанные семейства математических моделей. Рассматриваемые семейства проанализированы с точки зрения их применимости к решению задач, стоящих перед средними и крупными городами. Обоснован выбор моделей на основе клеточного автомата как инструмента решения такого рода задач.
Страницы: 3-14
Список источников
- Banister D. The sustainable mobility paradigm // Transport Policy. 2008. V. 15. P. 73−80.
- Stanley J., Hensher D.A., Stanley J., Currie G., Greene W.H., Vella-Brodrick D. Social Exclusion and the Value of Mobility // Journal of Transport Economics and Policy. 2011. V. 45(2). P. 197−222.
- Семенов В.В. Математическое моделирование динамики транспортных потоков мегаполиса. М.: ИПМ им. М.В. Келдыша РАН. 2004. 44 с.
- Yang H., Yagar S. Traffic assignment and signal control in saturated road networks // Transportation Research Part A. 1995. V. 29. P. 125−139.
- Carey M., Ge Y.E. Comparing whole-link travel-time models // Transportation Research. 2003. V. 37 B. P. 905−926.
- Pandian S., Gokhale S., Ghoshal A.K. Evaluating effects of traffic and vehicle characteristics on vehicular emissions near traffic intersections // Transportation Research Part D. 2009. V. 14. P. 180−196.
- Hunt P.B., Robertson D.L., Bretherton R.D. The SCOOT on-line traffic signal optimization technique // Traffic Engineering and Control. 1982. V. 23. P. 190−192.
- Hallmark S.L., Fomunung I., Guensler R., Bachman W. Assessing impacts of improved signal timing and transportation control measure using an activity-specific modeling approach // Transportation Research Record. 2000. V. 1738. P. 49−55.
- Unal A., Rouphail N.M., Frey H.C. Effect of arterial signalization and level of service on measured vehicle emissions // Transportation Research Record. 2003. V. 1842. P. 47−56.
- Li X., Li G., Pang S., Yang X., Tian J. Signal timing of intersections using integrated optimization of traffic quality, emissions and fuel consumption: a note // Transportation Research Part D. 2004. V. 9. P. 401−407.
- Гасников А.В., Кленов С.Л., Нурминский Е.А., Холодов Я.А., Шамрай Н.Б. Введение в математическое моделирование транспортных потоков: Учеб. пособие / Приложения: Бланк М.Л., Гасникова Е.В., Замятин А.А. и Малышев В.А., Колесников А.В., Райгородский А.М. / Под ред. А.В. Гасникова. М.: МФТИ. 2010. 362 с.
- van Wageningen-Kessels F., van Lint H., Vuik K., Hoogendoorn S. Genealogy of traffic flow models // Springer Berlin Heidelberg. 2015. V. 4. P. 445−473.
- Pipes L.A. An operational analysis of traffic dynamics // J. Appl. Phys. 1953 V. 24(3). P. 274−281.
- Kometani E., Sasaki T. Dynamic behavior of traffic with a nonlinear spacing: speed relationship // Amsterdam: Elsevier Publishing Co. 1961. V. 105. P. 105−119.
- Gipps P.G. A behavioral car-following model for computer simulation // Transportation Research Part B Methodological. 1981. V. 15(2). P. 105−111.
- Newell G.F. Nonlinear effects in the dynamics of car following // Operations Research. 1961. V. 9(2). P. 209−229.
- Leclercq L. Hybrid approaches to the solutions of the «Lighthill-Whitham-Richards» models // Transportation Research Part B Methodological. 2007. V. 41(7). P. 701−709.
- Bourrel E., Lesort J.B. Mixing microscopic and macroscopic representations of traffic flow hybrid model based on Lighthill-Whitham-Richards theory // Transp. Res. Rec. J. Transp. Res. Board. 2003. V. 1852. P. 193−200.
- Laval J.A., Leclercq L. A mechanism to describe the formation and propagation of stop-and-go waves in congested freeway traffic // Philos Trans R Soc A Math Phys Eng Sci. 2010. V. 368. P. 4519−4541.
- Chandler R., Herman R., Montroll E. Traffic dynamics: studies in car following // Operations Research. 1958. V. 6(2). P. 165−184.
- Herman R., Montroll E.W., Potts R.B., Rothery R.W. Traffic dynamics: analysis of stability in car following // Operations Research. 1959. V. 7(1). P. 86−106.
- Helly W. Simulation of bottlenecks in single lane traffic flow // Herman R. (ed). Theory of traffic flow. Proceedings. Amsterdam: Elsevier Publishing Co. 1961. P. 207−238.
- Gazis D.C., Herman R., Rothery R.W. Nonlinear follow-the-leader models of traffic flow // Operations Research. 1961. V. 9(4). P. 545−567.
- Bando M., Hasebe K., Nakayama A., Shibata A., Sugiyama Y. Dynamical model of traffic congestion and numerical simulation // Phys Rev E Stat Nonlinear Soft Matter Phys. 1995. V. 51. P. 1035−1042.
- Bando M., Hasebe K., Nakanishi K., Nakayama A. Analysis of optimal velocity model with explicit delay // Phys Rev E Stat Nonlinear Soft Matter Phys. 1998. V. 58(5). P. 5429−5435.
- Treiber M., Hennecke A., Helbing D. Congested traffic states in empirical observations and microscopic simulations // Phys Rev E Stat Nonlinear Soft Matter Phys. 2000. V. 62(2). P. 1805−1824.
- Treiber M., Kesting A. Verkehrsdynamik und -simulationen: Daten, Modelle und Anwendungen der Verkehrsflussdynamik // Springer - Lehrbuch. 2010. P. 380. (German).
- Wilson R.E. Mechanisms for spatio-temporal pattern formation in highway traffic models // Philos Trans R Soc A Math Phys Eng Sci. 2008. V. 366(1872). P. 2017−2032.
- Wilson R.E., Ward J.A. Car-following models: fifty years of linear stability analysis: a mathematical perspective // Transp Plan Technol. 2011. V. 34(1). P. 3−18.
- Kerner B.S., Rehborn H. Experimental features and characteristics of traffic jams // Phys Rev E Stat Nonlinear Soft Matter Phys. 1996. V. 53. P. 1297−1300.
- Kerner B.S. Introduction to modern traffic flow theory and control: the long road to three-phase traffic theory // New York: Springer. 2009.
- Wiedemann R. Simulation des Strassenverkehrsflusses // Institute for Traffic Engineering, University of Karlsruhe, Tech. Rep. 1974.
- Brackstone M., McDonald M. Car-following: a historical review // Transp Res Part F Traffic Psychol Behav. 1999. V. 2(4). P. 181−196.
- Bexelius S. An extended model for car-following // Transp Res. 1968. V. 2(1). P. 13−21.
- Lenz H., Wagner C.K., Sollacher R. Multi-anticipative car-following model // Eur Phys J B Condens Matter Complex Syst. 1999. V. 7. P. 331−335.
- Treiber M., Kesting A., Helbing D. Delays, inaccuracies and anticipation in microscopic traffic models // Phys A Stat Mech Appl. 2006. V. 360(1). P. 71−88.
- Ossen S., Hoogendoorn S.P. Multi-anticipation and heterogeneity in car-following empirics and a first exploration of their implications // In: Intelligent Transportation Systems Conference (ITSC-06). 2006. IEEE. P. 1615−1620.
- Knospe W., Santen L., Schadschneider A., Schreckenberg M. Empirical test for cellular automaton models of traffic flow // Phys. Rev. 2004. V. 70.
- Buckley D.J. A semi-Poisson model of traffic flow // Transp Sci. 1968. V. 2(2). P. 107−133.
- Branston D. Models of single lane time headway distributions // Transp Sci. 1976. V. 10(2). P. 125−148.
- Mahnke R., Kühne R. Probabilistic description of traffic breakdown // In: Schadschneider A., Poschel T., Kuhne R., Schreckenberg M., Wolf D.E. (eds). Trafficandgranularflow-05. NewYork: Springer. 2007. P. 527−536.
- Prigogine I., Andrews F.C. A Boltzmann-like approach for traffic flow // Operations Research. 1960. V. 8(6). P. 789−797.
- Prigogine I. A Boltzmann-like approach to the statistical theory of traffic flow // Herman R. (ed). Theory of traffic flow. Proceedings. Amsterdam: Elsevier Publishing Co. 1961. P. 158−164.
- Hoogendoorn S.P., Bovy P.H.L. Generic gas-kinetic traffic systems modeling with applications to vehicular traffic flow // Transportation Research Part B Methodological. 2001. V. 35(4). P. 317−336.
- Tampere C.M.J., van Arem B., Hoogendoorn S.P. Gas-kinetic traffic flow modeling including continuous driver behavior models // Transp Res Rec J Transp Res Board. 2003. V. 1852 P. 231−238.
- Lighthill M.J., Whitham G.B. On kinematic waves II: a theory of traffic flow on long crowded roads // Proc R Soc Lond Ser A Math Phys Sci. 1955. V. 229(1178). P. 317−345.
- Richards P.I. Shock waves on the highway // Operations Research. 1956. V. 4(1). P. 42−51.
- Lebacque J.P. A two phase extension of the LWR model based on the boundedness of traffic acceleration // In: Taylor M. (ed). Transportation and traffic theory in the 21st century. Proceedings of the 15th international symposium on transportation and traffic theory. 2002. P. 697−718.
- Leclercq L. A new numerical scheme for bounding acceleration in the LWR model // In: Heydecker B.G. (ed). Mathematics in transport. Selected. Proceedings of the 4th IMA international conference on mathematics in transport. Amsterdam.Elsevier. 2007. P. 279−292.
- Treiterer J., Myers J.A. The hysteresis phenomenon in traffic flow // In Buckley D.J. (editor). Proc. 6thISTT, Artarmon, NewSouthWales. 1974. P. 13.
- Daganzo C.F. The cell transmission model: A dynamic representation of highway traffic consistent with the hydrodynamic theory // Transp. Res. B. 1994. V. 28(4). P. 269−287.
- Daganzo C.F., Lin W.H., delCastillo J. A simple physical principle for the simulation of freeways with special lanes and priority vehicles // Transportation Research Part B Methodological. 1997. V. 31(2) P. 103−125.
- Laval J.A., Daganzo C.F. Lane-changing in traffic streams // Transportation Research Part B Methodological. 2006. V. 40(3). P. 251−264.
- Jin W.L. A kinematic wave theory of lane-changing traffic flow // Transportation Research Part B Methodological. 2010. V. 44. P. 1001−1021.
- Hoogendoorn S.P., vanLint J.W.C., Knoop V.L. Dynamic first-order modeling of phase-transition probabilities // In: Appert-Rolland C., Chevoir F., Gondret P., Lassarre S., Lebacque J.P., Schreckenberg M. (eds). TrafficGranulFlow 07. Berlin: Springer. 2009. P. 85−92.
- Jabari S.E., Liu H.X. A stochastic model of traffic flow: theoretical foundations // Transportation Research Part B Methodological. 2012. V. 46(1). P. 156−174.
- Jabari S.E., Liu H.X. A stochastic model of traffic flow: Gaussian approximation and estimation // Transportation Research Part B Methodological. 2013. V. 47. P. 15−41.
- Daganzo C.F. A behavioral theory of multi-lane traffic flow. Part I: long homogeneous freeway sections // Transportation Research Part B Methodological. 2002. V. 36(2). P. 131−158.
- Wong G.C.K., Wong S.C. A multi-class traffic flow model: an extension of LWR model with heterogeneous drivers // Transp Res Part A Policy Pract. 2002. V. 36(9). P. 827−841.
- Treiber M., Helbing D. Macroscopic simulation of widely scattered synchronized traffic states // J Phys A Math Gen. 1999. V. 32(1).
- Ngoduy D. Multiclass first-order traffic model using stochastic fundamental diagrams // Transportmetrica. 2011. V. 7(2). P. 111−125.
- Bellomo N., Dogbe C. On the modeling of traffic and crowds: a survey of models, speculations and perspectives // SIAM. 2011. V. 53 P. 409−463.
- Benzoni-Gavage S., Colombo R.M. An n-populations model for traffic flow // Eur J Appl Math. 2003. V. 14(05). P. 587−612.
- Chanut S., Buisson C. Macroscopic model and its numerical solution for two-flow mixed traffic with different speeds and lengths // Transp Res Rec J Transp Res Board. 2003. V. 1852. P. 209−219.
- Ngoduy D., Liu R. Multiclass first-order simulation model to explain non-linear traffic phenomena // Phys A Stat Mech Appl. 2007. V. 385(2). P. 667−682.
- Ngoduy D. Multiclass first-order modelling of traffic networks using discontinuous flow-density relationships // Transportmetrica. 2010. V. 6(2). P. 121−141.
- van Lint J.W.C., Hoogendoorn S.P., Schreuder M. Fastlane: a new multi-class first order traffic flow model // Transp Res Rec J Transp Res Board. 2008. V. 2088. P. 177−187.
- van Wageningen-Kessels F.L.M, van Lint J.W.C., Vuik C., Hoogendoorn S.P. Generic multi-class kinematic wave traffic flow modelling: model development and analysis of its properties // In: Transportation research board 92th annual meeting, under review for transportation research records. 2014.
- Nair R., Mahmassani H.S., Miller-Hooks E. A porous flow model for disordered heterogeneous traffic streams // In: Transportation research board 89th annual meeting compendium of papers (DVD). Washington D.C. 2012.
- Payne H.J. Models of freeway traffic and control // In: Mathematical models of public systems. Simulationcouncilproceedings. 1971. P. 51−61.
- Daganzo C.F. Requiem for second-order fluid approximations of traffic flow // Transportation Research Part B Methodological. 1995. V. 29(4). P. 277−286.
- Aw A., Rascle M. Resurrection of «second order models» of traffic flow - // SIAM J Appl Math. 2000. V. 60(3). P. 916−938.
- Lebacque J.P., Mammar S. Generic second order traffic flow modeling // In: Allsop R.E., Bell M.G.H., Heydecker B.G. (eds). Transportationandtraffictheory. Oxford: Elsevier. 2007. P. 755−776.
- Шинкарев А.А. Анализ и рефакторинг представления моделей транспортных потоков на основе клеточного автомата // В мире научных открытий. 2015. № 4.1(64). С. 585−595.
- Шинкарев А.А. Трехступенчатое унифицированное представление моделей транспортных потоков на основе клеточного автомата // Междунар. научно-исследовательский журнал. 2015. № 3(34). С. 126−128.
- Shinkarev A.A. Traffic lane changing motivations for traffic flow mathematical models based on cellular automata theory // Control Systems and Information Technologies. 2015. V. 61. P. 48−51.