350 руб
Журнал «Биомедицинская радиоэлектроника» №2-3 за 2022 г.
Статья в номере:
Изучение метаболических процессов в мышечных тканях методом спектроскопии ядерного магнитного резонанса
Тип статьи: обзорная статья
DOI: https://doi.org/10.18127/j15604136-202202-06
УДК: 537.63
Авторы:

А.П. Соковикова1, М.В. Гуляев2, Ю.А. Пирогов3

1–3 Московский государственный университет имени М.В. Ломоносова (Москва, Россия)

Аннотация:

Постановка проблемы. Представлен аналитический обзор публикаций, посвященных исследованию метаболических процессов в мышечных тканях посредством спектроскопии ядерного магнитного резонанса (ЯМР).

Цель работы – рассмотрение и оценка методов протонной и фосфорной ЯМР-спектроскопии как неинвазивного аналога биопсии при изучении патологий мышечной ткани.

Результаты. Выполнен аналитический обзор статей, в которых рассматривается применение ЯМР-спектроскопии в диагностике таких патологий мышечной ткани, как миопатия Дюшенна, миотоническая дистрофия, сахарный диабет и сердечная недостаточность. Особое внимание уделяется рассмотрению молекулярных процессов, протекающих в разнообразных мышечных тканях с участием метаболических превращений карнозина, креатина, липидов и фосфорсодержаших метаболитов. Описаны также диагностические методы протонной и фосфорной ЯМР-спектроскопии при анализе состояния здоровья людей при физических нагрузках.

Практическая значимость. Выводы данной статьи могут применяться в лабораторных и клинических исследованиях мышечных патологий, а также в ходе наблюдения за состоянием здоровья спортсменов при нормальной и критически предельной физической нагрузке организма.

Страницы: 58-65
Для цитирования

Соковикова А.П., Гуляев М.В., Пирогов Ю.А. Изучение метаболических процессов в мышечных тканях методом спектроскопии ядерного магнитного резонанса // Биомедицинская радиоэлектроника. 2022. T. 25. № 2. С. 58-65. DOI: https://doi.org/ 10.18127/j15604136-202202-06

Список источников
  1. Reyngoudt H., Turk S., Carlier P.G. 1H NMRS of carnosine combined with 31P NMRS to better characterize skeletal muscle pH dysregulation in Duchenne muscular dystrophy // NMR in Biomedicine. 2017. V. 31(1). P. e3839.
  2. Just Kukurová I., Valkovič L., Ukropec J., de Courten B., Chmelík M., Ukropcová B.,  Krššák M. Improved spectral resolution and high reliability of in vivo 1H MRS at 7 T allow the characterization of the effect of acute exercise on carnosine in skeletal muscle // NMR in Biomedicine. 2015. V. 29(1). P. 24–32.
  3. Hwang J.-H., Choi C.S. Use of in vivo magnetic resonance spectroscopy for studying metabolic diseases // Experimental & Molecular Medicine. 2015. V. 47(2). P. e139.
  4. Barnes P. Skeletal muscle metabolism in myotonic dystrophy. A 31P magnetic resonance spectroscopy study // Brain. 1997.
    V. 120(10). P. 1699–1711.
  5. Bonati U., Hafner P., Schädelin S., et al. Quantitative muscle MRI: a powerful surrogate outcome measure in Duchenne muscular dystrophy // Neuromuscular Disorders. 2015. V. 25(9). P. 679–685.
  6. Da Eira Silva V., Painelli V. de S., Shinjo S.K., Ribeiro Pereira W., Cilli E.M., Sale C., Artioli G.G. Magnetic Resonance Spectroscopy as a Non-invasive Method to Quantify Muscle Carnosine in Humans: a Comprehensive Validity Assessment // Scientific Reports. 2020. V. 10(1). P. e4908.
  7. Chance B., Eleff S., Leigh J.S., Sokolow D., Sapega A. Mitochondrial regulation of phosphocreatine/inorganic phosphate ratios in exercising human muscle: a gated 31P NMR study // Proceedings of the National Academy of Sciences. 1981.
    V. 78(11). P. 6714–6718.
  8. Menon R.G., Xia D., Katz S.D. et al. Dynamic 31P-MRI and 31P-MRS of lower leg muscles in heart failure patients // Scientific Reports. 2021. V. 11(1). P. e7412.
  9. Krššák M., Lindeboom L., Schrauwen‐Hinderling V., Szczepaniak L.S., Derave W., Lundbom J., Boesch C.  Proton magnetic resonance spectroscopy in skeletal muscle: Experts’ consensus recommendations // NMR in Biomedicine. 2020. V. 34(5). P. e4266.
  10. Van der Graaf M. In vivo magnetic resonance spectroscopy: basic methodology and clinical applications // European Biophysics Journal. 2009. V. 39(4). P. 527–540.
  11. Tkáč I., Gruetter R. Methodology of 1H NMR Spectroscopy of the Human Brain at Very High Magnetic Fields // Applied Magnetic Resonance. 2005. V. 29(1). P. 139–157.
  12. Ozdemir M.S., Reyngoudt H., De Deene Y., et al. Absolute quantification of carnosine in human calf muscle by proton magnetic resonance spectroscopy // Physics in Medicine and Biology. 2007. V. 52(23). P. 6781–6794.
  13. Chung W., Baguet A., Bex T., Bishop D.J., Derave W. Doubling of muscle carnosine concentration does not improve laboratory 1-hr cycling time-trial performance // International Journal of Sport Nutrition and Exercise Metabolism 2014. V. 24. P. 315–324.
  14. Derave W., Oezdemir M.S., Harris R.C., Pottier A., Reyngoudt H., Koppo K., Wise J.A., Achten E. Beta-alanine supplementation augments muscle carnosine content and attenuates fatigue during repeated isokinetic contraction bouts in trained sprinter // Journal of Applied Physiology. 2007. V. 103(5). P. 1736–1743.
  15. Derave W., Everaert I., Beeckman S., Baguet A. Muscle carnosine metabolism and beta-alanine supplementation in relation to exercise and training // Sports medicine. 2010. V. 40(3). P. 247–263.
  16. Baguet A., Reyngoudt H., Pottier A., Everaert I., Callens S., Achten E., Derave W. Carnosine loading and washout in human skeletal muscles // Journal of applied physiology. 2009. V. 106(3). P. 837–842.
  17. Yki-Järvinen H. Liver fat in the pathogenesis of insulin resistance and type 2 diabetes // Digestive diseases. 2010. V. 28. P. 203–209.
  18. De Bock K., Dresselaers T., Kiens B., Richter E.A., Van Hecke P., Hespel P. Evaluation of intramyocellular lipid breakdown during exercise by biochemical assay, NMR spectroscopy, and Oil Red O staining // American journal of physiology. Endocrinology and metabolism. 2007. V. 293(1). E428–E434.
  19. Nakagawa Y., Hattori M. Intramyocellular lipids of muscle type in athletes of different sport disciplines // Open Access Journal of Sports Medicine. 2017. V. 8. P. 161–166.
  20. Meyerspeer M., Boesch C., Cameron D., Dezortová M., Forbes S.C. 31P magnetic resonance spectroscopy in skeletal muscle: Experts’ consensus recommendations // NMR in Biomedicine. 2020. V. 34(7). P. e4246.
  21. Meyerspeer M., Krššák M., Moser E. Relaxation times of 31P-metabolites in human calf muscle at 3 T // Magnetic Resonance in Medicine. 2003. V. 49(4). P. 620–625.
  22. Bogner W., Chmelík M., Schmid A.I., Moser E., Trattnig S., Gruber S. Assessment of 31P relaxation times in the human calf muscle: a comparison between 3 T and 7 T in vivo // Magnetic Resonance in Medicine. 2009. V. 62(3). P. 574–582.
  23. Valkovič L., Chmelík M., Krššák M. In-vivo 31P-MRS of skeletal muscle and liver: A way for non-invasive assessment of their metabolism // Analytical biochemistry. 2017. V. 529. P. 193–215.
  24. Van der Kemp W.J.M., Stehouwer B.L., Runge J.H., Wijnen J.P., Nederveen A.J., Luijten P.R., Klomp D.W.J. Glycerophosphocholine and Glycerophosphoethanolamine Are Not the Main Sources of the In Vivo 31P MRS Phosphodiester Signals from Healthy Fibroglandular Breast Tissue at 7 T // Frontiers in Oncology. 2016. V. 30(1). P. 145–152.
  25. Ikehira H., Nishikawa S., Matsumura K., Hasegawa T., Arimizu N., Tateno Y. The functional staging of Duchenne muscular dystrophy using in vivo 31P MR spectroscopy // Radiation medicine. 1995. V. 13(2). P. 63–65.
  26. Srivastava N.K., Mukherjee S., Sinha N. Alteration of phospholipids in the blood of patients with Duchenne muscular dystrophy (DMD): in vitro, high resolution 31P NMR-based study // Acta Neurologica Belgica. 2016. V. 116(4). P. 573–581.
  27. Hooijmans M.T., Doorenweerd N., Baligand C., Verschuuren J.J.G.M., Ronen I., et al. Spatially localized phosphorous metabolism of skeletal muscle in Duchenne muscular dystrophy patients: 24–month follow-up // Plos One. 2017. V. 12(8). P. e0182086.
  28. Ripley E.M., Clarke G.D., Hamidi V., et al. Reduced skeletal muscle phosphocreatine concentration in type 2 diabetic patients: a quantitative image-based phosphorus-31 MR spectroscopy study // American journal of physiology. Endocrinology and metabolism. 2018. V. 315(2). P. E229–E239.
  29. Trenell M.I., Thompson C.H., Sue C.M. Exercise and myotonic dystrophy: a 31P magnetic resonance spectroscopy and magnetic resonance imaging case study // Annals of neurology. 2006. V. 59(5). P. 871–872.
  30. Molina A.J., Bharadwaj M.S., Van Horn C., et al. Skeletal muscle mitochondrial content, oxidative capacity, and Mfn2 expression are reduced in older patients with heart failure and preserved ejection fraction and are related to exercise intolerance // JACC Heart Failure. 2016. V. 4(8). P. 636–645.
  31. Nakae I., Mitsunami K., Matsuo S., et al. Detection of calf muscle alterations in patients with chronic heart failure by P magnetic resonance spectroscopy: Impaired adaptation to continuous exercise // Experimental and clinical cardiology. 2005. V. 10(1). P. 4–8.
  32. Haykowsky M.J., Kouba E.J., Brubaker P.H., Nicklas B.J., Eggebeen J., Kitzman D.W. Skeletal muscle composition and its relation to exercise intolerance in older patients with heart failure and preserved ejection fraction // The American journal of cardiology. 2014. V. 113(7). P. 1211–1216.
  33. Jung W.I., Sieverding L., Breuer J., et al. 31P NMR spectroscopy detects metabolic abnormalities in asymptomatic patients with hypertrophic cardiomyopathy // Circulation. 1998. V. 97(25). P. 2536–2542.
Дата поступления: 20.03.2022
Одобрена после рецензирования: 24.03.2022
Принята к публикации: 28.04.2022