350 руб
Журнал «Биомедицинская радиоэлектроника» №4 за 2018 г.
Статья в номере:
Разработка и применение имплантных катушек для получения МРТ-изображений с высоким пространственным разрешением
Тип статьи:
научная статья
УДК: 537.635
Ключевые слова:
имплантные катушки
беспроводные катушки
индуктивно-связанные катушки
соленоидальные катушки
TLR катушки
магнитно-резонансная микроскопия
Авторы:
М.В. Гуляев, О.С. Павлова, Д.В. Волков, Н.В. Анисимов, Ю.А. Пирогов
Аннотация:
Представлен аналитический обзор публикаций, посвященных разработке и применениям в МРТ имплантируемых в организм миниатюрных электродинамических систем, так называемых «имплантных катушек», позволяющих усилить регистрируемый сигнал в области интереса и повысить пространственное разрешение МРТ-изображений. Рассмотрены контактные и бесконтактные способы включения имплантных катушек в приемопередающий тракт МР-томографа и их конструктивные особенности. Обсуждаются теоретические основы и приводятся формулы расчета резонансных частот имплантных систем. Описаны области применения и перспективы дальнейшего использования имплантных катушек в МРТ.
Страницы: 41-51
Список источников
- Worthley S.G., Helft G., Fuster V., Fayad Z.A., Shinnar M., Minkoff L.A., Schechter C., Fallon J.T., Badimon J.J. A novel nonobstructive intravascular MRI coil in vivo imaging of experimental atherosclerosis // Arterioscler Thromb. Vasc. Biol. 2003. V. 23. P. 346–350.
- Zuehlsdorff S., Umathum R., Volz S., Hallscheidt P., Fink C., Semmler W., Bock M. MR coil design for simultaneous tip tracking and curvature delineation of a catheter // Magn. Reson. Med. 2004 V. 52. P. 214–218.
- Kurpad K.N., Unal O. Multimode intravascular RF coil for MRI-guided interventions // J. Magn. Reson. Imaging. 2011. V. 33. P. 995–1002.
- Rivas P.A., Nayak K.S., Scott G.C., McConnell M.V., Kerr A.B., Nishimura D.G., Pauly J.M., Hu B.S. In vivo real-time intravascular MRI // J. Cardiovasc. Magn. Reson. 2002. V. 4. P. 223–232.
- Berry L., Renaud L., Kleimann P., Morin P., Armenean M., Saint-Jalmes H. Development of implantable detection microcoils for minimally invasive NMR spectroscopy // Sens. Actuators. 2001. V. 93. P. 214–218.
- Ocali O., Atalar E. Intravascular magnetic resonance imaging using a loopless catheter antenna // Magn. Reson. Med. 1997. V. 37. P. 112–118.
- Susil R.C., Yeung C.J., Atalar E. Intravascular extended sensitivity (IVES) MRI antennas // Magn. Reson. Med. 2003. V. 50. P. 383–390.
- Sathyanarayana S., Bottomley P.A. MRI endoscopy using intrinsically localized probes // Med. Phys. 2009. V. 36. P. 908–919.
- Takahashi H., Dohi T., Matsumoto K., Shimoyama I. A microplanar coil for local high resolution MRI // IEEE MEMS’07 Conference, Kobe Japan, January 21–25. 2007. P. 549–552.
- Ahmad M.M., Syms R.R.A., Young I.R., Mathew B., Casperz W., Taylor- Robinson S.D., Wadsworth C.A., Gedroyc W.M.W. Catheter-like flexible microcoil RF detectors for internal magnetic resonance imaging // J. Micromech. Microeng. 2009. V. 19. P. 074011–074021.
- Kadjo A., Baxan N., Cespuglio R., Briguet A., Rousset C., Hoang M., Graveron-Demilly D., Fakri-Bouchet L. In vivo animal NMR studies using implantable microcoil // Proc. IEEE Eng. Med. Biol. Soc. 2008. V. 30. P. 2047–2050.
- Kadjo A., Martin-Durupty L., Cespuglio R., Graveron-Demilly D., Fakri-Bouchet L. The potentialities of implantable micro-coil for detection of brain’s proton metabolites by NMR microspectroscopy // Proc. Int. Soc. Mag. Reson. Med. 2011. V. 19. P. 1886.
- Olson D.L., Peck T.L., Webb A.G., Magin R.L., Sweedler J.V. High-resolution microcoil 1h-NMR for mass-limited, nanoliter-volume samples // Science. 1995. V. 270. P. 1967–1970.
- Peck T.L., Magin R.L., Lauterbur P.C. Design and analysis of microcoils for NMR microscopy // J. MagnReson. B. 1995. V. 108. P. 114–124.
- Ciobanu L, Seeber D.A., Pennington CH. 3D MR microscopy with resolution 3.7 microm by 3.3 microm by 3.3 microm // J. MagnReson. 2002. V. 158. P. 178–182.
- Ciobanu L. Pennington CH. 3D micron-scale MRI of single biological cells // Solid State Nucl. Magn. Reson. 2004.
V. 25. P. 138–41. - Aguayo J.B., Blackband S.J., Schoeniger J., Mattingly M.A., Hintermann M. Nuclear magnetic resonance imaging of a single cell // Nature. 1986. V. 322. P. 190–191.
- Lee S.C., Kim K., Kim J., Lee S., Yi J.H., Kim S.W., Ha K.S., Cheong C. One micrometer resolution NMR microscopy // J. MagnReson. 2001. V. 150. P. 207–213.
- Grant S.C., Buckley D.L., Gibbs S., Webb A.G., Blackband S.J. MR microscopy of multicomponent diffusion in single neurons // MagnReson Med. 2001. V. 46. P. 1107–1112.
- Rivera D.S., Cohen M.S., Clark W.G., Chu A.C., Nunnally R.L., Smith J., Mills D., Judy J.W. An Implantable RF Solenoid for Magnetic Resonance Microscopy and Microspectroscopy // IEEE Trans Biomed Eng. 2012. V. 59(8).
P. 2118–2125. - http://coil32.ru/self-capacitance.html
- Medhurst R.G. H.F. Resistance and Self-Capacitance of Single-Layer Solenoids (GEC Research Labs.). Wireless Engineer. 1947. P. 80–92.
- Grover F.W. Inductance Calculations: Working Formulas and Tables / Norstrand V., editor. New York: Dover. 1946.
- Minard K.R., Wind R.A. Solenoidal microcoil design part: II. Optimizing winding parameters for maximum signal-to-noise performance // Concepts MagnReson. 2001. V. 13.
P. 190–210. - Butterworth S. Effective Resistance of Inductance Coils at Radio Frequencies // Experimental Wireless &The Wireless Engineer. 1926. V. 3. P. 203–210. P. 309–316. P. 417–424. P. 483–492.
- http://coil32.ru/qfactor.html
- Medhurst R.G. H.F. Resistance and Self-Capacitance of Single-Layer Solenoids, (GEC Research Labs.). Wireless Engineer. 1947. P. 35–43.
- Mohmmadzadeh M., Baxan N., Badilita V., Kratt K., Weber H., Korvink J.G., Wallrade U., Hennig J., von Elverfeldt D. Characterization of 3D MEMS fabricated microsolenoid at 9.4 T. // J. MagnReson. 2011. V. 208. P. 20–26.
- Schneck J.F. Review article: role of the magnetic susceptibility in MRI // Med. Phys. 1996. V. 23. P. 815–850.
- Webb A.J. Radiofrequency microcoils in magnetic resonance // ProgNuclMagnResonSpectrosc. 1997. V. 31. P. 1–42.
- Samel B., Chowdhury M.K., Stemme G. The fabrication of microfluidic structures by means of full-wafer adhesive bonding using a poly(dimethylsiloxane) catalyst // J. Micromech. Microeng. 2007. V. 17. P. 1710–1714.
- Olson D.L., Lacey M.E., Sweedler J.V. High-resolution microcoil NMR for analysis of mass-limited, nanoliter samples // Anal. Chem. 1998. V. 70. P. 645–650.
- Subramanian R., Webb A.G. Design of solenoidal microcoils for highresolution 13C NMR spectroscopy // Anal. Chem. 1998. V. 70. P. 2454–2458.
- Choi H., Ma J. Use of perfluorocarbon compound in the end qourectal coil to improve MR spectroscopy of the prostate // AJR. 2008. V. 190. P. 1055–1059.
- Mohammadzadeh M. 2D B0 Mapping of Micro Solenoids With and Without FC-84 and SU-8 at 9.4 T // Concepts in Magnetic Resonance Part B. 2015. V. 45B(2). P. 69–77.
- Weber H., Baxan N., Paul D., Maclaren J., Schmidig D., Mohammadzadeh M., Hennig J., Elverfeldt D. Microcoil-based MRI: feasibility study and cell culture applications using a conventional animal system // MagnReson Mater. Phy. 2011. V. 24. P. 137–145.
- Grant S.C., Aiken N.R., Plant H.D., Gibbs S., Mareci T.H., Webb A.G., Blackband S.J. NMR spectroscopy of single neurons // MagnReson Med. 2000. V. 44.
- Ротхаммель К. Антенны. Изд. 11. Т.1. Т.2. М.: Данвел. 2007.
- Ford J.C., Hackney D.B., Alsop D.C., Jara H., Joseph P.M., Hand C.M., Black P. MRI characterization of diffusion coefficients in a rat spinal cord injury model // Magnetic resonance in medicine. 1994, V. 31(5). P. 488–494.
- Bilgen M., Elshafiey I., Narayana P.A. In vivo magnetic resonance microscopy of rat spinal cord at 7T using implantable RF coils // Magnetic Resonance in Medicine. 2001. V. 46. P. 1250–1253.
- Bilgen M. Magnetic resonance microscopy of spinal cord in mouse using a miniaturized implantable RF coil // Journal of Neuroscience Methods. 2007. V. 159. P. 93–97.
- Murphy-Boesch J., Koretsky A.P. An in vivo NMR probe circuit for improved sensitivity // Journal of Magnetic Resonance. 1983. V. 54(3). P. 526–532.
- Volland N.A., Mareci T.H., Constantinidis I., Simpson N.E. Development of an inductively coupled MR coil system for imaging and spectroscopic analysis of an implantable bioartificial construct at 11.1 T // Magnetic Resonance in Medicine. 2010. V. 63. P. 998–1006.
- Woytasik M., Ginefri J.-C., Raynaud J.-S., Poirier-Quinot M., Dufour-Gergam E., Grandchamp J.-P., Darasse L., Robert P., Gilles J.-P., Martincic E., Girard O. Characterisation of flexible RF microcoil dedicated to surface MRI // Microsyst. Technol. 2007. V. 13. P. 1575–1580.
- Ginefri J.-C., Rubin A., Tatoulian M., Dufour-Gergam E. Implanted, inductively-coupled, radiofrequency coils fabricated on flexible polymeric material: Application to in vivo rat brain MRI at 7T // Journal of Magnetic Resonance. 2012. V. 224. P. 61–70.
- Frass-Kriegl R., Laistler E., Hosseinnezhadian S., Schmid A.I., Moser E., Poirier-Quinot M., Darrasse L., Ginefri J.-C. Multi-turn multi-gap transmission line resonators – Concept, design and first implementation at 4.7 T and 7 T // Journal of Magnetic Resonance. 2016. V. 273. P. 65–72.
- Serfaty S., Haziza N., Darrasse L., Kan S. Multi-turn split-conductor transmission-line resonators // Magnetic Resonance in Medicine. 1997. V. 38(4). P. 687–689.
- Gonord P., Kan S., Leroy-Willig A., Wary C. Multigap parallel-plate bracelet resonator frequency determination and applications // RevSciInstrum. 1994. V. 65. P. 3363–3366.
Дата поступления: 29 марта 2018 г.