350 руб
Журнал «Биомедицинская радиоэлектроника» №4 за 2018 г.
Статья в номере:
Разработка и применение имплантных катушек для получения МРТ-изображений с высоким пространственным разрешением
Тип статьи: научная статья
УДК: 537.635
Авторы:

М.В. Гуляев, О.С. Павлова, Д.В. Волков, Н.В. Анисимов, Ю.А. Пирогов

Аннотация:

Представлен аналитический обзор публикаций, посвященных разработке и применениям в МРТ имплантируемых в организм миниатюрных электродинамических систем, так называемых «имплантных катушек», позволяющих усилить регистрируемый сигнал в области интереса и повысить пространственное разрешение МРТ-изображений. Рассмотрены контактные и бесконтактные способы включения имплантных катушек в приемопередающий тракт МР-томографа и их конструктивные особенности. Обсуждаются теоретические основы и приводятся формулы расчета резонансных частот имплантных систем. Описаны области применения и перспективы дальнейшего использования имплантных катушек в МРТ.

Страницы: 41-51
Список источников
  1. Worthley S.G., Helft G., Fuster V., Fayad Z.A., Shinnar M., Minkoff L.A., Schechter C., Fallon J.T., Badimon J.J. A novel nonobstructive intravascular MRI coil in vivo imaging of experimental atherosclerosis // Arterioscler Thromb. Vasc. Biol. 2003. V. 23. P. 346–350.
  2. Zuehlsdorff S., Umathum R., Volz S., Hallscheidt P., Fink C., Semmler W., Bock M. MR coil design for simultaneous tip tracking and curvature delineation of a catheter // Magn. Reson. Med. 2004 V. 52. P. 214–218.
  3. Kurpad K.N., Unal O. Multimode intravascular RF coil for MRI-guided interventions // J. Magn. Reson. Imaging. 2011. V. 33. P. 995–1002.
  4. Rivas P.A., Nayak K.S., Scott G.C., McConnell M.V., Kerr A.B., Nishimura D.G., Pauly J.M., Hu B.S. In vivo real-time intravascular MRI // J. Cardiovasc. Magn. Reson. 2002. V. 4. P. 223–232.
  5. Berry L., Renaud L., Kleimann P., Morin P., Armenean M., Saint-Jalmes H. Development of implantable detection microcoils for minimally invasive NMR spectroscopy // Sens. Actuators. 2001. V. 93. P. 214–218.
  6. Ocali O., Atalar E. Intravascular magnetic resonance imaging using a loopless catheter antenna // Magn. Reson. Med. 1997. V. 37. P. 112–118.
  7. Susil R.C., Yeung C.J., Atalar E. Intravascular extended sensitivity (IVES) MRI antennas // Magn. Reson. Med. 2003. V. 50. P. 383–390.
  8. Sathyanarayana S., Bottomley P.A. MRI endoscopy using intrinsically localized probes // Med. Phys. 2009. V. 36. P. 908–919.
  9. Takahashi H., Dohi T., Matsumoto K., Shimoyama I. A microplanar coil for local high resolution MRI // IEEE MEMS’07 Conference, Kobe Japan, January 21–25. 2007. P. 549–552.
  10. Ahmad M.M., Syms R.R.A., Young I.R., Mathew B., Casperz W., Taylor- Robinson S.D., Wadsworth C.A., Gedroyc W.M.W. Catheter-like flexible microcoil RF detectors for internal magnetic resonance imaging // J. Micromech. Microeng. 2009. V. 19. P. 074011–074021.
  11. Kadjo A., Baxan N., Cespuglio R., Briguet A., Rousset C., Hoang M., Graveron-Demilly D., Fakri-Bouchet L. In vivo animal NMR studies using implantable microcoil // Proc. IEEE Eng. Med. Biol. Soc. 2008. V. 30. P. 2047–2050.
  12. Kadjo A., Martin-Durupty L., Cespuglio R., Graveron-Demilly D., Fakri-Bouchet L. The potentialities of implantable micro-coil for detection of brain’s proton metabolites by NMR microspectroscopy // Proc. Int. Soc. Mag. Reson. Med. 2011. V. 19. P. 1886.
  13. Olson D.L., Peck T.L., Webb A.G., Magin R.L., Sweedler J.V. High-resolution microcoil 1h-NMR for mass-limited, nanoliter-volume samples // Science. 1995. V. 270. P. 1967–1970.
  14. Peck T.L., Magin R.L., Lauterbur P.C. Design and analysis of microcoils for NMR microscopy // J. MagnReson. B. 1995. V. 108. P. 114–124.
  15. Ciobanu L, Seeber D.A., Pennington CH. 3D MR microscopy with resolution 3.7 microm by 3.3 microm by 3.3 microm // J. MagnReson. 2002. V. 158. P. 178–182.
  16. Ciobanu L. Pennington CH. 3D micron-scale MRI of single biological cells // Solid State Nucl. Magn. Reson. 2004.
    V. 25. P. 138–41.
  17. Aguayo J.B., Blackband S.J., Schoeniger J., Mattingly M.A., Hintermann M. Nuclear magnetic resonance imaging of a single cell // Nature. 1986. V. 322. P. 190–191.
  18. Lee S.C., Kim K., Kim J., Lee S., Yi J.H., Kim S.W., Ha K.S., Cheong C. One micrometer resolution NMR microscopy // J. MagnReson. 2001. V. 150. P. 207–213.
  19. Grant S.C., Buckley D.L., Gibbs S., Webb A.G., Blackband S.J. MR microscopy of multicomponent diffusion in single neurons // MagnReson Med. 2001. V. 46. P. 1107–1112.
  20. Rivera D.S., Cohen M.S., Clark W.G., Chu A.C., Nunnally R.L., Smith J., Mills D., Judy J.W. An Implantable RF Solenoid for Magnetic Resonance Microscopy and Microspectroscopy // IEEE Trans Biomed Eng. 2012. V. 59(8).
    P. 2118–2125.
  21. http://coil32.ru/self-capacitance.html
  22. Medhurst R.G. H.F. Resistance and Self-Capacitance of Single-Layer Solenoids (GEC Research Labs.). Wireless Engineer. 1947. P. 80–92.
  23. Grover F.W. Inductance Calculations: Working Formulas and Tables / Norstrand V., editor. New York: Dover. 1946.
  24. Minard K.R., Wind R.A. Solenoidal microcoil design part: II. Optimizing winding parameters for maximum signal-to-noise performance // Concepts MagnReson. 2001. V. 13.
    P. 190–210.
  25. Butterworth S. Effective Resistance of Inductance Coils at Radio Frequencies // Experimental Wireless &The Wireless Engineer. 1926. V. 3. P. 203–210. P. 309–316. P. 417–424. P. 483–492.
  26. http://coil32.ru/qfactor.html
  27. Medhurst R.G. H.F. Resistance and Self-Capacitance of Single-Layer Solenoids, (GEC Research Labs.). Wireless Engineer. 1947. P. 35–43.
  28. Mohmmadzadeh M., Baxan N., Badilita V., Kratt K., Weber H., Korvink J.G., Wallrade U., Hennig J., von Elverfeldt D. Characterization of 3D MEMS fabricated microsolenoid at 9.4 T. // J. MagnReson. 2011. V. 208. P. 20–26.
  29. Schneck J.F. Review article: role of the magnetic susceptibility in MRI // Med. Phys. 1996. V. 23. P. 815–850.
  30. Webb A.J. Radiofrequency microcoils in magnetic resonance // ProgNuclMagnResonSpectrosc. 1997. V. 31. P. 1–42.
  31. Samel B., Chowdhury M.K., Stemme G. The fabrication of microfluidic structures by means of full-wafer adhesive bonding using a poly(dimethylsiloxane) catalyst // J. Micromech. Microeng. 2007. V. 17. P. 1710–1714.
  32. Olson D.L., Lacey M.E., Sweedler J.V. High-resolution microcoil NMR for analysis of mass-limited, nanoliter samples // Anal. Chem. 1998. V. 70. P. 645–650.
  33. Subramanian R., Webb A.G. Design of solenoidal microcoils for highresolution 13C NMR spectroscopy // Anal. Chem. 1998. V. 70. P. 2454–2458.
  34. Choi H., Ma J. Use of perfluorocarbon compound in the end qourectal coil to improve MR spectroscopy of the prostate // AJR. 2008. V. 190. P. 1055–1059.
  35. Mohammadzadeh M. 2D B0 Mapping of Micro Solenoids With and Without FC-84 and SU-8 at 9.4 T // Concepts in Magnetic Resonance Part B. 2015. V. 45B(2). P. 69–77.
  36. Weber H., Baxan N., Paul D., Maclaren J., Schmidig D., Mohammadzadeh M., Hennig J., Elverfeldt D. Microcoil-based MRI: feasibility study and cell culture applications using a conventional animal system // MagnReson Mater. Phy. 2011. V. 24. P. 137–145.
  37. Grant S.C., Aiken N.R., Plant H.D., Gibbs S., Mareci T.H., Webb A.G., Blackband S.J. NMR spectroscopy of single neurons // MagnReson Med. 2000. V. 44.
  38. Ротхаммель К. Антенны. Изд. 11. Т.1. Т.2. М.: Данвел. 2007.
  39. Ford J.C., Hackney D.B., Alsop D.C., Jara H., Joseph P.M., Hand C.M., Black P. MRI characterization of diffusion coefficients in a rat spinal cord injury model // Magnetic resonance in medicine. 1994, V. 31(5). P. 488–494.
  40. Bilgen M., Elshafiey I., Narayana P.A. In vivo magnetic resonance microscopy of rat spinal cord at 7T using implantable RF coils // Magnetic Resonance in Medicine. 2001. V. 46. P. 1250–1253.
  41. Bilgen M. Magnetic resonance microscopy of spinal cord in mouse using a miniaturized implantable RF coil // Journal of Neuroscience Methods. 2007. V. 159. P. 93–97.
  42. Murphy-Boesch J., Koretsky A.P. An in vivo NMR probe circuit for improved sensitivity // Journal of Magnetic Resonance. 1983. V. 54(3). P. 526–532.
  43. Volland N.A., Mareci T.H., Constantinidis I., Simpson N.E. Development of an inductively coupled MR coil system for imaging and spectroscopic analysis of an implantable bioartificial construct at 11.1 T // Magnetic Resonance in Medicine. 2010. V. 63. P. 998–1006.
  44. Woytasik M., Ginefri J.-C., Raynaud J.-S., Poirier-Quinot M., Dufour-Gergam E., Grandchamp J.-P., Darasse L., Robert P., Gilles J.-P., Martincic E., Girard O. Characterisation of flexible RF microcoil dedicated to surface MRI // Microsyst. Technol. 2007. V. 13. P. 1575–1580.
  45. Ginefri J.-C., Rubin A., Tatoulian M., Dufour-Gergam E. Implanted, inductively-coupled, radiofrequency coils fabricated on flexible polymeric material: Application to in vivo rat brain MRI at 7T // Journal of Magnetic Resonance. 2012. V. 224. P. 61–70.
  46. Frass-Kriegl R., Laistler E., Hosseinnezhadian S., Schmid A.I., Moser E., Poirier-Quinot M., Darrasse L., Ginefri J.-C. Multi-turn multi-gap transmission line resonators – Concept, design and first implementation at 4.7 T and 7 T // Journal of Magnetic Resonance. 2016. V. 273. P. 65–72.
  47. Serfaty S., Haziza N., Darrasse L., Kan S. Multi-turn split-conductor transmission-line resonators // Magnetic Resonance in Medicine. 1997. V. 38(4). P. 687–689.
  48. Gonord P., Kan S., Leroy-Willig A., Wary C. Multigap parallel-plate bracelet resonator frequency determination and applications // RevSciInstrum. 1994. V. 65. P. 3363–3366.
Дата поступления: 29 марта 2018 г.