350 руб
Журнал «Биомедицинская радиоэлектроника» №2 за 2012 г.
Статья в номере:
Теоретическая дозиметрия радиочастотных электромагнитных полей при оценке биологического действия. Возможные погрешности
Авторы:
Н.Б. Рубцова, С.Ю. Перов
Аннотация:
Рассмотрены теоретические аспекты радиочастотной дозиметрии с позиций оценки величины поглощенной энергии биологическими тканями. Оценена эффективность и определены ошибки чис-ленных алгоритмов, используемых в радиочастотной дозиметрии. Обоснована перспективность теоретической дозиметрии при обеспечении электромагнитной безопасности человека и окружающей среды.
Страницы: 12-21
Список источников
  1. Измеров Н.Ф., Пальцев Ю.П., Суворов Г.А., Рубцова Н.Б., Походзей Л.В., Тарасова Л.А. Неионизирующие электромагнитные излучения и поля // Физические факторы производственной и природной среды. Гигиеническая оценка и контроль. М.: Медицина. 2003. С. 12-66.
  2. Дерни К.Х. Модели человека и животных применительно к электромагнитной дозиметрии: Обзор аналитических и численных методов // ТИИЭР. 1980. Т. 68. № 1. С. 40-48.
  3. Карпов В.Н., Галкин А.А., Давыдов Б.И. Некоторые аспекты дозиметрии при изучении биологического действия неионизирующего электромагнитного излучения // Космическая биология и авиакосмическая медицина. 1984. Т. 18. № 2. С. 7-22.
  4. Давыдов Б.И., Тихончук В.С., Антипов В.В. Биологическое действие, нормирование и защита от электромагнитных излучений. М.: Энергоатомиздат. 1984.
  5. ICNIRP Guidelines for limiting exposure to time-varying electric, magnetic and electromagnetic fields (up to 300 GHz) // Health Phys. 1998. V. 74. № 4. P. 492-522.
  6. IEEE std C95.1-2005 IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz.
  7. Weil C.M. Absorption characteristics of multilayered sphere models exposed to UHF/microwave radiation // IEEE Transactions on Biodmedical Engineering. 1975. V. 22. № 6. P. 468-476.
  8. Massoudi H., Durney C.H., Johnson C.C. Long-wavelength electromagnetic power absorption in ellipsoidal models of man and animals // IEEE Transactions on Microwave Theory and Techniques. 1977. V. 25. № 1. P. 47-52.
  9. Iskander M.F., Olson S.C., McCalmont J.F. Near-field absorption characteristics of biological models in the resonance frequency range // IEEE Transactions on Microwave Theory and Techniques, Short Papers. 1987. V. 35. № 8. P. 776-781.
  10. Harrington F. Field Computation by Moment Methods. New York. Macmillan. 1968.
  11. Livesay D.E., Chen K-M. Electromagnetic fields induced inside arbitrarily shaped biological bodies // IEEE Transactions on Microwave Theory and Techniques. 1974. V. 22. № 12. P. 1273-1280.
  12. Hagmann M.J., Gandhi O.P., Durney C.H. Numerical calculation of electromagnetic energy deposition for a realistic model of man // IEEE Transactions on Microwave Theory and Techniques. 1979. V. 27. № 9. P. 804-809.
  13. Hagmann M.J., Levin R.L. Accuracy of block models for evaluation of the deposition of energy by electromagnetic fields // IEEE Transactions on Microwave Theory and Techniques. 1986. V. 34. № 6. P. 653-659.
  14. Stuchly M.A., Spiegel R.J., Stuchly S.S., Kraszewski A. Exposure of man in the near-field of a resonant dipole: Comparison between theory and measurements // IEEE Transactions on Microwave Theory and Techniques. 1986. V. 34. V 1. P. 26-31.
  15. Hafner C. The Generalized Multipole Technique for Computational Electromagnetics. Artech House. 1990.
  16. Kuster N. Multiple multipole method for simulating EM problems involving biological bodies // IEEE Transactions on Biomedical Engineering. 1993. V. 40. № 7. P. 611-620.
  17. Kuster N., Balzano Q. Energy absorption mechanism by biological bodies in the near field of dipole antennas above 300 MHz // IEEE Transactions on Vehicular Technology. 1992. V. 41. № 1. P. 17-23.
  18. Silvester P.P., Ferrari R.F. Finite Elements for Electrical Engineers. Cambridge University Press. Cambridge UK. 1983.
  19. Pekel U., Mittra R. A finite-element-method frequency domain application of the perfectly matched layer (PML) concept // Microwave and Optical Technology Letters. 1995. V. 9. P. 117-122.
  20. Morgan M.A. Finite element calculation of microwave absorption by the cranial structure // IEEE Transactions on Biomedical Engineering. 1981. V. 28. V. 10. P. 687-695.
  21. Roemer R.B., Cetas T.C., Oleson J.R., Halac S., Matloubieh A.Y. Comparative evaluation of hyperthermia heating modalities // Radiation Research. 1984. V. 100. P. 450-472.
  22. Yee K.S. Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media // IEEE Transactions on Antennas and Propagation. 1966. V. 14. № 3. P. 302-307.
  23. Taove A., Brodwin M.E. Computation of the electromagnetic fields and induced temperatures within a model of the microwave-irradiated human eye // IEEE Transactions on Microwave Theory and Techniques. 1975. V. 23. № 11. P. 888-896.
  24. Sullivan D.M., Gandhi O.M., Taove A. Use of the finite-difference time-domain method for calculating EM absorption in man models // IEEE Transactions on Biomedical Engineering. 1988. V. 35. № 3. P. 179-186.
  25. Sullivan D. Three-dimensional computer simulation in deep regional hyperthermia using the finite-difference time-domain method // IEEE Transactions on Microwave Theory and Techniques. 1990. V. 38. № 2. P. 204-211.
  26. Bakker J.F., Paulides M.M, Christ A., Kuster N., van Rhoon G.C. Assessment of induced SAR in children exposed to electromagnetic plane waves between 10 MHz and 5.6 GHz // Phys. Med. Biol. 2010. V. 55. № 11. P. 3115-3130.
  27. Taflove A., Hagness S.C. Computational Electrodynamics: The Finite-Difference Time-Domain Method Artech House. Boston, MA. 3rd edition. 2005.
  28. Christ A., Kainz W., Hahn E.G., Honegger K., Zefferer M., Neufeld E., Rascher W., Janka R., Bautz W., Chen J., Kiefer B., Schmitt P., Hollenbach H.P., Shen J., Oberle M., Szczerba D., Kam A., Guag J.W., Kuster N. 2010b The Virtual Family-development of surface-based anatomical models of two adults and two children for dosimetric simulations // Phys. Med. Biol. 2010. V. 55. № 2. P. 23-38.
  29. Lazzi G., Gandhi O., Sullivan D. Use of PML absorbing layers for the truncation of the head model in cellular telephone simulations // IEEE Trans. Microw. Theory Tech. 2000. V. 48. № 11. P. 2033-2039.
  30. Wang J., Fujiwara O., Kodera S., Watanabe S. 2006 FDTD calculation of whole-body average SAR in adult and child models for frequencies from 30 MHz to 3 GHz // Phys. Med. Biol. 2006. V. 51. P. 4119-4127.
  31. Findlay R.P., Dimbylow P.J. Variations in calculated SAR with distance to the perfectly matched layer boundary for a human voxel model // Phys. Med. Biol. 2006. V. 51. P. 411-415.
  32. Kuhn S., Jennings W., Christ A., Kuster N. Assessment of induced radio-frequency electromagnetic fields in various anatomical human body models // Phys. Med. Biol. 2009. V. 54. № 4. P. 875-890.
  33. Dimbylow P.J., Hirata A., Nagaoka T. Intercomparison of whole-body averaged SAR in European and Japanese voxel phantoms // Phys. Med. Biol. 2008. V. 53. № 20. P. 5883-5897.
  34. Dimbylow P., Bolch W., Lee C. SAR calculations from 20 MHz to 6 GHz in the University of Florida newborn voxel phantom and their implications for dosimetry // Phys. Med. Biol. 2010. V. 55. № 5. P. 1519-1530.
  35. Gosselin M.C., Christ A., Kuhn S., Kuster N. Dependence of the occupational exposure to mobile phone base stations on the properties of the antenna and the human body // IEEE Trans. Electromagn. Compat. 2009. V. 51. № 2. P. 227-235.
  36. Zaidi H., Tsui B. Review of computational anthropomorphic anatomical and physiological models // Proc. IEEE. 2009. V. 97. № 12. P. 1938-1953.
  37. Christ A., Klingenbock A., Samaras T., Goicea¬nu C., Kuster N. The dependence of electromag¬netic far-field absorption on body tissue compo¬sition in the frequency range from 300 MHz to 6 GHz // IEEE Trans. Microw. Theory Tech. 2006. V. 54. № 5. P. 2188-2195.
  38. Mcintosh R.L., Anderson V. SAR versus Sinc: What is the appropriate RF exposure metric in the range 1-10 GHz - Part II: Using complex human body models // Bioelectromagnetics. 2010. V. 31. № 6. P. 467-478.
  39. Hirata A., Watanabe S., Fujiwara O., Kojima M., Sasaki K., Shiozawa T. Temperature elevation in the eye of anatomically based human head models for plane-wave exposures // Phys. Med. Biol. 2007. V. 52. № 21. P. 6389-6399.
  40. Beard B., Kainz W. Review and standardization of cell phone exposure calculations using the SAM phantom and anatomically correct head models // BioMedical Engineering OnLine. 2004. V. 3. № 34. P. 1-10.
  41. Gabriel S., Lau R.W., Gabriel C. The dielectric properties of biological tissues: II. Measurements in the frequency range 10 Hz to 20 GHz // Phys. Med. Biol. 1996. V. 41. № 11. P. 2251-2269.
  42. Gabriel C., Peyman A. Dielectric measurement: error analysis and assessment of uncertainty // Phys. Med. Biol. 2006. V. 51. № 23. P. 6033-6046.
  43. Keshvari J., Keshvari R., Lang S. The effect of increase in dielectric values on specific absorption rate (SAR) in eye and head tissues following 900, 1800 and 2450 MHz radio frequency (RF) exposure // Phys. Med. Biol. 2006. V. 51. № 6. P. 1463-1477.
  44. Beard B.B., Kainz W., Onishi T., Iyama T., Watanabe S., Fujiwara O., Wang J., Bit-Babik G., Faraone A., Wiart J., Christ A., Kuster N., Lee A.K., Kroeze H., Siegbahn M., Keshvari J., Abrishamkar H., Simon W., Manteuffel D., Nikoloski N. Comparisons of computed mobile phone induced SAR in the SAM phantom to that in anatomically correct models of the human head // IEEE Trans. Electromagn. Compat. 2006. V. 48. № 2. P. 397-407.
  45. Berenger J.P. A perfectly matched layer for the absorption of electromagnetic waves // J. Comput. Phys. 1994. V. 114. P. 185-200.
  46. ICNIRP Guidelines for limiting exposure to time-varying electric, magnetic and electromagnetic fields (up to 300 GHz) // Health Phys. 1998. V. 74. № 4. P. 492-522.
  47. IEEE standard C95.3-2002. IEEE Recommended Practice for Measurements and Computations of Radio Frequency Electromagnetic Fields With Respect to Human Exposure to Such Fields, 100 kHz-300 GHz, Institute of Electrical and Electronics Engineers New York. 2002.
  48. IEEE standard C95.1-2005. IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz, Institute of Electrical and Electronics Engineers New York. 2005.
  49. Conil E., Hadjem A., Lacroux F., Wong M.F., Wiart J. Variability analysis of SAR from 20 MHz to 2.4 GHz for different adult and child models using finite-difference time-domain // Phys. Med. Biol. 2008. V. 53. № 6. P. 1511-1525.
  50. Hirata A., Fujiwara O., Nagaoka T., Watanabe S. Estimation of whole-body average SAR in human models due to plane-wave exposure at resonance frequency // IEEE Trans. Electro¬magn. Compat. 2010. V. 52. № 1. P. 41-48.
  51. Dimbylow P.J. Fine resolution calculations of SAR in the human body for frequencies up to 3 GHz // Phys. Med. Biol. 2002. V. 47. № 16. P. 2835-2846.
  52. Ilvonen S., Toivonen T., Toivo T., Uusitupa T., Laakso I.  Numerical specific absorption rate analysis and measurement of a small indoor base station antenna // Microw. Opt. Techn. Let. 2008 V. 50. № 10. P. 2516-2521.
  53. Triors B., Hansson B., Tornevik C. The generation of simple compliance boundaries for mobile communication base station antennas using formulae for SAR estimation // Phys. Med. Biol. 2009. V. 54. № 13. P. 4243-4256.