Журнал «Успехи современной радиоэлектроники» №5 за 2018 г.
Статья в номере:
В.Г. Шадров – к.ф.-м.н., вед. науч. сотрудник, ГНПО «НПЦ НАН Беларуси по материаловедению» А.Э. Дмитриева – мл. науч. сотрудник, ГНПО «НПЦ НАН Беларуси по материаловедению» А.В. Болтушкин – к.ф.-м.н., вед. науч. сотрудник, ГНПО «НПЦ НАН Беларуси по материаловедению» E-mail: nemtsevich@ifttp.bas-net.by
Тип статьи: научная статья
УДК: 539.216.2
Авторы:

В.Г. Шадров – к.ф.-м.н., вед. науч. сотрудник, ГНПО «НПЦ НАН Беларуси по материаловедению»

А.Э. Дмитриева – мл. науч. сотрудник, ГНПО «НПЦ НАН Беларуси по материаловедению»

А.В. Болтушкин – к.ф.-м.н., вед. науч. сотрудник, ГНПО «НПЦ НАН Беларуси по материаловедению» E-mail: nemtsevich@ifttp.bas-net.by

Аннотация:

Сделан анализ технологии получения структурированных магнитных сред, их основных магнитных параметров, используемых магнитных материалов, а также альтернативных концепций сред магнитной записи.

Список источников
  1. Stamps R., Breitkreuts S., Akerman J., Chumak A., Otari Y., Bauer G.E., Thiele J.U., Bowen M., Majetich S.A., Klaui M., Prejbeanu I.L., Dieny B.,Dempsey N.M., Hillebrands B. The 2014 magnetism roadmap // J. Phys. D.: Appl. Phys. 2014. V. 47. P. 33301-1-28.
  2. Plumer M.L., Cain W.C. New paradigms in magnetic recording // Physics in Canada. 2011. V. 67. P. 25–29.
  3. Richter H.J. The transition from longitudinal to perpendicular recording // J. Phys. D.: Appl. Phys. 2007. V. 40. P. R149-R177.
  4. Wang F., Xu X.-H. Writability issues in high-anisotropy perpendicular magnetic recording media // Chin. Phys. B. 2014. V. 23. 036802-1-12.
  5. Шадров В.Г., Дмитриева А.Э., Болтушкин А.В. Суперпарамагнитный предел и термостабильность сред магнитной записи // Успехи современной радиоэлектроники. 2015.№ 12. С. 67–76.
  6. Terris B.D., Thomson T. Nanofabricated and self-assembled magnetic structures as data storage media // J. Phys. D: Appl. Phys. 2005.V. 38. P. 199–222.
  7. Weller D., Parker G., Mosendz O., Champion E., Stipe B., Wang X., Klemmer T., Ju G., Ajan A. A HAMR media technology roadmap to an areal density of 4 Tb/in2 // IEEE Trans. Magn. 2014. V. 50. P. 3100108-1-8.
  8. Zhu J. G., Zhu X., Tang Y. Microwave assisted magnetic recording // IEEE Trans. Magn. 2008. V. 44. P. 125–131.
  9. Victora R. H., Shen X. Exchange coupled composite media for perpendicular magnetic recording // IEEE Trans. Magn. 2005. V. 41. 2828–2833.
  10. Wood R., Williams M., Kavcic A., Miles J. The feasibility of magnetic recording at 10 Tb/inch2 on conventional media // IEEE Trans. Magn. 2009. V. 445. P. 917–923.
  11. Zou Y.Y., Wang J.P., Hee C.H., Chong T.C. Tilted media in a perpendicular recording system for high areal density recording // Appl. Phys. Lett. 2003. V. 82. P. 2473–2475.
  12. Terris B.D. Fabrication challenges for patterned recording media // J. Magn. Magn. Mater. 2009.V.321. P. 512–517.
  13. Ross C.A. Patterned magnetic recording media // Ann. Rev. Mater. Res., 2001. V. 31. P. 203–235.
  14. Sbia R., Piramanayagam S.N. Patterned media towards nano-bit magnetic recording: fabrication and challenges // Rec. Pat. Nanotech. 2007. V. 1. P. 29–40.
  15. Griffiths R.A.,Williams A.,Oakland C.,Roberts J.,Viyayaraghavan A., Thomson T. Directed self-assembly of block copolymers for use in bit рatterned media fabrication // J. Phys. D.: Appl. Phys.2013. V. 46. P. 503001-1-29.
  16. Kikitsu A. Prospects for bit patterned media for high-density magnetic recording // J. Magn. Magn. Mater. 2009. V. 321. P. 526–530.
  17. 17. Dobis E.A., Bandić Z.Z., Wu T.W., Albrecht T. Patterned media: nanofabrication challenges of future disk drives // Proc. IEEE. 2008. V. 96. P. 1836–1846.
  18. Suess D., Vogler C., Abert C., Bruckner F., Windl R., Breth L. Fundamental limits in heat-assisted magnetic recording and methods to overcome it with exchange spring structures // J. Appl. Phys. 2015. V. 117. P. 163913-1-4.
  19. Zhou N., Traverso L.M., Xu X. Power delivery and self-heating in nanoscale near-field transducer for heat-assisted magnetic recording// Nanotechnology. 2015. V. 26. P. 134001-1-7.
  20. Busyatras W.,Warisarn C.,Okamoto Y.,Nakamura Y.,Myint L.M.,Supnithi Р., Kovintayewat P. Utilization of multiple read heads for TMR prediction and correction in bit-patterned media recording // AIP Advances. 2017. V. 7. P. 056501-1-5. Wang S.,
  21. Wang Y., Victora R.H. Shingled magnetic recording on bit patterned media at 10 Tb/in2 // IEEE Trans. Magn. 2013. V. 49. P. 3644–3647.
  22. Vogler C., Abert C., Bruckner F., Suess D., Praetorius D. Heat-assisted magnetic recording of bit-patterned media beyond 10 Tb/in2 // Appl. Phys. Lett. 2016. V. 108. P. 102406-1-4.
  23. Amos N., Butler J., Lee B., Shachar M.H., Hu B., Tian Y., Hong J., Garcia D., Ikkawi R.M., Haddon R.C., Litvinov D., Khizroev S. Multilevel-3D bit patterned media with 8 signal levels per nanocolumn // PlosOne.2012. V. 7. P. e40134-1-7.
  24. Suess D., Fuger M., Abert C., Bruckner F., Vogler C. Superior bit error rate and jitter due to improved switching field distribution in exchange spring magnetic recording media // Sci. Rep. 2016. V. 6. P. 27048-1-12.
  25. Malloy M., Litt L.C. Technology review and assessment of nanoimprint lithography for semiconductor and patterned media manufacturing // J. Micro/Nanolith. MEMS MOEMS. 2011. V. 10. P. 032001-1-13.
  26. Albrecht T.R., Bedau D., Dobisz E., Gao H., Grobis M., Hellwig O.,Kercher D., Lille J., Marinero E., Patel K., Ruiz R., Schabes M.E., Wan L.,Weller D., Wu T.-V. Bit patterned media at 1 Tdot/in2 and beyond // IEEE Trans. Magn. 2013. V. 49. P. 773–778.
  27. Yang X., Xiao S., Hsu Y.,Feldbaum M., Lee K., Kuo D. Directed self-assembly of block copolymer for bit patterned media with areal density of 1.5 teradot/inch2 and beyond // J. Nanomater. 2013. V. 2013. P. e615896-1-4.
  28. Hellwig O.,Marinero E.E., Kercher D., Hennen T, McCallum A., Dobisz E., Wu T.-W, Lille J., Hirano T., Ruiz R., Grobis M.K.,Weller D., Albrecht T.R. Bit patterned media optimization at 1 Tdot/in2 by post-annealing // J. Appl. Phys. 2014. V. 116. P. 123913-1-5.
  29. Choi C., Yoon Y., Hong D., Oh Y., Talke F.E., S. Jin S. Planarization of patterned magnetic recording media to enable head flyability // Microsystem Technologies. 2011. V. 17. P. 395–402.
  30. Yang E., Liu Z., Arora H., Wu T-W., Ayanoor-Vitikkate V., Spoddig D., Grobis M., Gurney B.A., Albrecht T.R., Terris B. Templateassisted direct growth of 1Td/in2 bit patterned media // Nano Lett. 2016. V. 16. P. 4726-4730.
  31. Marchon B., Pitchford T., Hsia Y-T., Gangopadhyay S. The head-disk interface roadmap to an areal density of Tbit/in2 // Advances in Tribology. 2013. V. 2013. Р. 1–8.
  32. Wan L., Ruiz R., Gao H., Patel K. C., Lille J., Zeltzer G., Dobisz E. A., Bogdanov A., Nealey P.F., Albrecht T.R. Fabrication of templates with rectangular bits on circular tracks by combining block copolymer directed self-assembly and nanoimprint lithography // J. Micro/Nanolith. MEMS and MOEMS. 2012. V. 11. P. 031405-1-3.
  33. Chokprasombat K. Synthesis of patterned media by self-assembly of Fe-Pt nanoparticles // Walallak J. Sci. Tech. 2011. V. 8. P. 87–96.
  34. Ross C., Cheng J. Patterned magnetic media made by self-assembled block-copolymer lithography // MRS Bull. 2008. V. 33. P. 838–845.
  35. Kihara N., Yamamoto R., Sasao N., Shimada T., Yuzawa A., Okino T., Ootera Y., Kamata Y., Kikitsu A. Fabrication of 5 Tdot/in.2 bit patterned media with servo pattern using directed self-assembly // J. Vac. Sci. Technol. B. 2012. V. 30. P. 06FH02-1-4.
  36. Xiao S., Yang X., Lee K. Y., Hwu J. J., Wago K., Kuo D. Directed self-assembly for high-density bit-patternedmedia fabrication using spherical block copolymers // J. Micro-Nanolithogr. MEMS and MOEMS. 2013. V. 12. P. 031110-1-4.
  37. Choi C., Noh K., Choi D.X., Khamwannah J., Liu C.-H., Hong D., Chen L.- H., Jin S. Geometrically planar ion-implant patterned magnetic recording  media using block copolymer aided gold nanoscale masks // IEEE Trans. Magn. 2012. V. 48. P. 3402–3405.
  38. Kikitsu A., Maeda T., Hieda H., Yamamoto R., Kihara N., Kamata Y. 5 Tdots/in2 bit patterned media fabricated by a directed selfassembly mask // IEEE Trans. Magn. 2013. V. 49. Р. 693–698.
  39. Шадров В.Г., Немцевич Л.В., Болтушкин А.В. Распределение полей перемагничивания и магнитное поведение структурированных сред магнитной записи // Успехи современной радиоэлектроники. 2015. № 6. С. 51–59.
  40. Hellwig O., Berger A., Thomson T., Dobisz E., Bandic Z., Yang H., Kercher D.S., Fullerton E.E. Separating dipolar broadening from the intrinsic switching field distribution in perpendicular patterned media // Appl. Phys. Lett. 2007. V. 90. P. 162516–1–3.
  41. Abes M., Rastei M.V., Venuat J., Carvalho A., Boukari S., Beaurepaire E., Panissod P., Dinia A., Bucher J.P., Pierron-Bohnes А. Magnetic switching field distribution of patterned CoPd dots // J. Appl. Phys. 2009. V. 105. P. 113916-1-8.
  42. Shaw J.M., Rippard W.H., Russek S.E., Reith T., Falco А. Origins of switching field distributions in perpendicular magnetic nanodot arrays // J. Appl. Phys. 2007. V. 101. P. 023909-1-4.
  43. Pfau B., Günther C.M., Guehrs E., Hauet T., Yang H., Vinh L., Xu X., Yaney D., Rick R., Eisebitt S., Hellwig O. Origin of magnetic switching field distribution in bit patterned media based on pre-patterned substrates // Appl. Phys. Lett. 2011. V. 99. P. 062502-1-3.
  44. Lau J.W., McMichael R.D., Chung S.H., Rantschler J.O., Parekh V., Litvinov D. Microstructural origin of switching field distribution in patterned Co/Pd multilayer nanodots // Appl. Phys. Lett. 2008. V. 92. P. 012506-1-5.
  45. Hellwig O., Bosworth J.K., Dobish E., Kercher D., Hauet T., Zeltzer G., Risner-Jamtgaard J.D., Yaney D., Ruiz R. Bit patterned media based on block copolymer directed assembly with narrow magnetic switching field distribution // Appl. Phys. Lett. 2010. V. 96. P. 052511-1-3.
  46. Tudosa I., Lubarda M.V., Chan K.T., Escobar M.A., Lomakin V., Fullerton E.E. Thermal stability of patterned Co/Pd nanodot arrays // Appl. Phys. Lett. 2012. V. 100. P. 102401-1-4.
  47. Lee J., Brombacher C., Fidler J., Dymerska B., Suess D., Albrecht M. Contribution of the easy axis orientation, anisotropy distribution and dot size on the switching field distribution of bit patterned media // Appl. Phys. Lett. 2011. V. 99. P. 062505-1-4.
  48. Pfau B., Günther C.M., Guehrs E., Hauet T., Hennen T., Eisebitt S., Hellwig O. Influence of stray fields on the switching-field distribution for bit-patterned media based on pre-patterned substrates // Appl. Phys. Lett. 2014. V. 105. P. 132407-1-3.
  49. Elbagi N., Kan J.J., Spada F.E., Fullerton E.E. Role of dipolar interactions on the thermal stability of high-density bit-patterned media// IEEE Magn. Lett. 2012. V. 3. P. 4500204-1-4.
  50. Hauet T., Dobisz E., Florez S., Park J., Lengsfield B., Terris B.D., Hellwig O. Role of reversal incoherency in reducing switching field and switching field distribution of exchange coupled composite bit patterned media // Appl. Phys. Lett. 2009. V. 95. P. 262504-1-3.
  51. Hellwig O., Heyderman L. J., Petracic O., Zabel H. Competing interactions in patterned and self-assembled magnetic nanostructures // Magnetic Nanostructures, H. Zabel and M. Farle, eds., Springer Berlin Heidelberg. 2013. P. 189–234.
  52. Krone P., Makarov D., Cattoni A., Faini G., Haghiri-Gosnet A.-M., Knittel L., Hartmann U., Schrefl T., Albrecht M. Investigation of the magnetization reversal of a magnetic dot array of Co/Pt multilayers // J. Nanopart. Res. 2011. V. 13. P. 5587–5593.
  53. Krone P., Makarov D., Schrefl T., Albrecht M. Exchange coupled composite bit patterned media // Appl. Phys. Lett. 2010. V. 97. P. 082501-1- 4.
  54. Wang H., Zhao H.B., Rahman T., Isowaki Y., Kamata Y.,Maeda T., Hieda H., Kikitsu A.,Wang J.P. Fabrication and characterization of FePt exchange coupled composite and graded bit patterned media // IEEE Trans. Magn. 2013. V. 49. P. 707–712.
  55. Tipcharoen W, Kaewrawang A., Siritaratiwat A. Design and micromagnetic simulation of Fe/L10-FePt/Fe trilayer for exchange coupled composite bit patterned media at ultrahigh areal density // Adv. Mater. Sci. Eng. 2015. V. 21. P. 504628-1-5.
  56. Berger A., Xu Y., Lengsfield B., Ikeda Y., Fullerton E.E. ∆H(M,∆M) method for the determination of intrinsic switching field distributions in perpendicu-lar media //IEEE Trans. Magn. 2005. V. 41. P. 3178–3180.
  57. Albrecht T.R., Arora H.A., Yanoor-Vitikkate V., Beaujour J.-M., Bedau D., Berman D., Bogdanov A.L. et al. Bit Patterned magnetic recording: Theory, media fabrication, and recording performance // IEEE Trans. Magn. 2015. V. 51. P. 1–43.
  58. Шадров В.Г., Дмитриева А.Э., Болтушкин А.В. Магнитные среды для термоассистированной магнитной записи // Успехи современной радиоэлектроники. 2017. № 2. С. 62–74.
  59. Baltz V., Landis S., Rodmacq B., Dieny B. Multilevel magnetic media in continuous and patterned films with out-of-plane magnetization // J. Magn. Mag. Mater. 2005. V. 290–291. P. 1286–1289.
  60. Albrecht M., Hu G., Moser A., Hellwig O., Terris B.D. Magnetic dot arrays with multiple storage layers // J. Appl. Phys. 2005. V. 97. P. 103910-1-3.
  61. Jubert P.O., Vanhaverbeke A., Bischof A., Allenspach R. Recording at large write currents on obliquely evaporated medium and application to a multilevel recording scheme // IEEE Trans. Mag. 2010. V. 46. P. 4059–4065.
  62. Winkler G., Suess D., Lee J., Fidler J., Bashir M.A. Microwave-assisted three-dimensional multilayer magnetic recording // J. Appl. Phys. Lett. 2009. V. 94. P. 232501-1-4.
  63. Richter H.J., Lyberatos A., Nowak U., Evans R.F.L., Chantrell R.W. The thermodynamic limits of magnetic recording // J. Appl. Phys. 2012. V. 111. P. 033909-1-8.
  64. Suess D., Schrefl T. Breaking the thermally induced write error in heat assisted recording by using low and high Tc materials // Appl. Phys. Lett. 2013. V. 102. P. 162405-1-4.
  65. Chaudhary R., Kansal A. A perspective on the future of the magnetic hard disk drive technology // Int. J. Tech. Res. Applications. 2015. V. 3. P. 63–74.
  66. McDaniel T.W. Areal density limitation in bit-patterned, heat-assisted magnetic recording using FePtX media // J. Appl. Phys. 2012. V. 112. Р. 093920.
  67. Piramanayagam S.N., Srinvasan K. Recording media research for future hard disk drives // J. Magn. Magn. Mater. 2009. V. 321. P. 485–494.
  68. Ranjbar M. Challenges in bit patterned media // J. Electron. Embed. Eng. 2016. V. 1. P. 001–002.
  69. Fontana R.E., Hetzler S.R., Decad G. Technology roadmap comparisons for TAPE, HDD, and NAND flash: implications for data storage applications // IEEE Trans. Magn. 2012. V. 48. P. 1692–1696.
  70. Aksornniem S., Silapunt R., Vopson M.M. Trapping electron assisted magnetic recording enhancement via dielectric underlayer media // IEEE Trans. Magn. 2014. V. 50. P. 1–5.
  71. Vahaplar K., Kalashnikova A.M., Kimel A.V., Hinzke D., Nowak U., Chantrell R.W, Tsukamoto A., Itoh A., Kirilyuk A., Rasing Th. Ultrafast path for optical magnetization reversal via a strongly nonequilibrium state // Phys. Rev. Lett. 2009. V. 103. P. 117201-1-4.
Дата поступления: 20 июля 2017 г.