Журнал «Успехи современной радиоэлектроники» №4 за 2018 г.
Статья в номере:
Магнитные головки чтения-записи: материалы, технологии, перспективы
Тип статьи: научная статья
УДК: 539.216.2
Авторы:

В.Г. Шадров – к.ф.-м.н., вед. науч. сотрудник, ГНПО «НПЦ НАН Беларуси по материаловедению»

А.Э. Дмитриева – мл. науч. сотрудник, ГНПО «НПЦ НАН Беларуси по материаловедению»

А.В. Болтушкин – к.ф.-м.н., вед. науч. сотрудник, ГНПО «НПЦ НАН Беларуси по материаловедению» E-mail: nemtsevich@ifttp.bas-net.by

 

Аннотация:

Сделан анализ основных параметров магнитных головок чтения-записи, технологии получения, используемых магнитных  материалов, а также альтернативных концепций магнитной записи. 

Страницы: 3-13
Список источников
  1. Stamps R., Breitkreuts S., Akerman J., Chumak A., Otari Y. et al. The 2014 magnetism roadmap // J. Phys. D.: Appl. Phys. 2014. V. 47. P. 333001-1-28.
  2. Plumer M.L., Cain W.C. New paradigms in magnetic recording // Physics in Canada. 2011. V. 67. P. 25–29.
  3. Richter H.J. The transition from longitudinal to perpendicular recording // J. Phys. D.: Appl. Phys. 2007. V. 40. P. R149–177.
  4. Wang F., Xu X.-H. Writability issues in high-anisotropy perpendicular magnetic recording media // Chin. Phys. B. 2014. V. 23. P. 036802-1-12.
  5. Шадров В.Г., Дмитриева А.Э., Болтушкин А.В. Суперпарамагнитный предел и термостабильность сред магнитной записи // Успехи современной радиоэлектроники. 2015. № 12. С. 67–76.
  6. Kief M.T., Inturi V., Benakli M., Tabakovic I., Sun M., Heinonen O., Riemer S., Vas'ko V. High magnetic saturation poles for advanced perpendicular writers // IEEE Trans. Magn. 2008. V. 44. P. 113–118.
  7. Scheunert G., Heinonen O., Hardeman R., Lapicki A., Gubbins M., Bowman R.M. A review of high magnetic moment thin films for microscale and nanotechnology applications // Appl. Phys. Rev. 2016. V. 3. P. 011301-1-44.
  8. Kryder M.H., Gage E.C., McDaniel T.W., Challener W.A., Rottmayer R.E., Ju G., Hsia Y.-T., Erden M.F. Heat assisted magnetic recording // Proc. IEEE. 2008. V. 96. P. 1810–1835.
  9. Zhu J. G., Zhu X., Tang Y. Microwave assisted magnetic recording // IEEE Trans. Magn. 2008. V. 44. P. 125–131.
  10. Chaudhary R., Kansal A. A perspective on the future of the magnetic hard disk drive technology // Int. J. Tech. Res. Applications. 2015. V. 3. P. 63–74.
  11. Wood R., Williams M., Kavcic A., Miles J. The feasibility of magnetic recording at 10 Tb/inch2 on conventional media // IEEE Trans. Magn. 2009. V. 445. P. 917–923.
  12. Kikitsu A. Prospects for bit patterned media for high-density magnetic recording// J. Magn. Magn. Mater. 2009. V. 321. P. 526–530.
  13. Wang S., Wang Y., Victora R.H. Shingled magnetic recording on bit patterned media at 10 Tb/in2 // IEEE Trans. Magn. 2013. V. 49. P. 3644–3647.
  14. Suess D., Vogler C., Abert C., Bruckner F., Windl R., Breth L. Fundamental limits in heat-assisted magnetic recording and methods to overcome it with exchange spring structures // J. Appl. Phys. 2015. V. 117. P. 163913-1-4.
  15. Khizroev S., Litvinov D. Perpendicular magnetic recording: Writing process // J. Appl. Phys. 2004. V. 95. P. 4521–4537.
  16. Gao K.Z., Heinonen O., Chen Y. Read and write processes, and head technology for perpendicular recording // J. Magn. Magn.  Mater. 2009. V. 321. P. 495–507.
  17. Noma K., Matsuoka M., Kanai H., Nomura K., Awaji N. Ultra-high magnetic moment films for write head // IEEE Trans. Magn. 2006. V. 42. P. 140–143.
  18. Cooper E.I., Bonhote C., Heidmann J., Hsu Y. et al. Recent developments in high-moment electroplated materials for recording heads // IBM J. Res. Dev. 2005. V. 49. P. 103–126.
  19. Wang S., Wei D., Gao K.-Z. Initial permeability and dynamic response of FeCo write pole // IEEE Trans. Magn. 2010. V. 46. P. 1951–1954.
  20. Brankovic S.R., Yang X., Klemmer T.J., M. Seigler M. Pulse electrodeposition of 2.4 T Co37Fe63 alloys at nanoscale for magnetic  recording application // IEEE Trans. Magn. 2006. V. 42. P. 132–139.
  21. Vopsaroiu M., Georgieva M., Grundy P.J., Fernandez G.V., Manzoor S., Thwaites M.J., O'Grady K. Preparation of high moment CoFe films with controlled grain size and coercivity // J. Appl. Phys. 2005. V. 97. P. 303–307.
  22. Okada Y., Hoshiya H., Okada T., Fuyama M. Magnetic properties of FeCo multilayered films for single pole heads // IEEE Trans. Magn. 2004. V. 40. P. 2368–2370.
  23. Skorvanek I., Marcin J., Turcanova J., Kovac J., Svec P. FeCo based soft magnetic nanocrystalline alloys // Acta Electrotech. Inf. 2010.V. 10. P. 14–21.
  24. Inturi V., Yin H., Kief M., Hadley M., C. Mathieu C. Practical FeC films for perpendicular writer pole // IEEE Trans. Magn. 2012. V. 48. P. 1718–1721.
  25. Atiq S., Ko H.S., Siddiqi S.A., Shin S.-C. Preparation and the influence of Co, Pt and Cr additions on the saturation magnetization of α″-Fe16N2 thin films // J. Alloys Compd. 2009. V. 479. P. 755–758.
  26. Bhattacharyya S. Iron nitride family at reduced dimensions: A review of their synthesis protocols and structural and magnetic properties // J. Phys. Chem. C 2015. V. 119. P. 1601–1622.
  27. Zulhijah R., Nandiyanto A.B.D., Ogi T., Iwaki T., Nakamura K., Okuyama K. Effect of oxidation on α″-Fe16N2 phase formation from plasma-synthesized spherical core-shell α-Fe/Al2O3 nanoparticles // J. Magn. Magn. Mater. 2015. V. 381. P. 89–98.
  28. Dirba I., Komissinskiy P., Gutfleisch O., Alff L. Increased magnetic moment induced by lattice expansion from α-Fe to α0-Fe8N // J. Appl. Phys. 2015. V. 117. P. 173911-1-5.
  29. Sims H., Butler W.H., Richter M., Koepernik K., Oglu E.S., Friedrich C., Blugel S. Theoretical investigation into the possibility of very large moments in Fe16N2 // Phys. Rev. B 2012. V. 86. P. 174422-1-5.
  30. Vaz C.A.F., Bland J.A.C., Lauhoff G. Magnetism in ultrathin film structures // Rep. Prog. Phys. 2008. V. 71. P. 056501-1-6.
  31. Zoto I., Mankey G. Magnetic properties of coupled Gd/Pd/Ni thin Films // Bull. Am. Phys. Soc. 2006. V. R23. P. 7–14.
  32. Cheng L., Altounian Z., Ryan D.-H., Stroem-Olsen J.O., Sutton M. Pd polarization and interfacial moments in Pd-Fe multilayers // Phys. Rev. B 2004. V. 69. P. 144403-1-7.
  33. Scheunert G., Ward C., Hendren W.R., Bowman R.M. Magnetization of 2.6T in gadolinium thin films // Appl. Phys. Lett. 2012. V. 101. P. 142407-1-4.
  34. Dhar S., Brandt O., Ramsteiner M., Sapega V.F., Ploog K.H. Colossal magnetic moment of Gd in GaN // Phys. Rev. Lett. 2005. V. 94. P. 037205-1-5.
  35. Cowley R.A., Bryn-Jacobsen C., Simpson J.A., McMorrow D.F., Ward R.C., Wells M.R. The unusual phase diagram of the magnetic structures of holmiumerbium alloys // J. Magn. Magn. Mater.1998. V. 177–181. P. 1012–1014.
  36. Scheunert G., Hendren W.R., Lapicki A.A., Hardeman R., Gubbins M., Bowman R.M. Improved magnetization in sputtered dysprosium thin films // J. Phys. D: Appl. Phys. 2013. V. 46. P. 152001-1-7.
  37. Gutfleisch O., Willard M.A., Bruck E., Chen C.H., Sankar S.C., Liu J.P. Magnetic materials and devices for the 21st century: stronger, lighter and more energy efficient // Adv. Mater. 2011. V. 23. P. 821–842.
  38. Ward C., Scheunert G., Hendren W.R., Bowman R.M. Realizing the high moment in Fe/Cr/Gd: The role of the rare earth // Appl. Phys.Lett. 2013. V. 102. P. 092403-1-4.
  39. Scheunert G., Ambrose T.A., Hendren W.R, Lapicki A.A.,Egan P., Hardeman R., Gubbins M., Bowman R.M. Ferromagnetism in DyRh and DyRhX (X-Fe, Ni, Co, Gd) thin films // J. Phys. D: Appl. Phys. 2014. V. 47 (48). 485002-1-6.
  40. Drovosekov A.B., Kreines N.M., Savitsky A.O. et al. Interlayer coupling in Fe/Cr/Gd multilayer structures // J. Exp. Theor. Phys. 2015. V. 120. P. 1041–1054.
  41. McFadyen I.R., Fullerton E.E., Carey M.J. State-of-the-art magnetic hard disc drives // MRS Bull. 2006. V. 31. P. 379–383.
  42. Johnson M. Giant magnetoresistanse and its impact on the magnetic recording industry // Physics in Canada. 2008. V. 64. P. 19–23.
  43. Hirohata A., Takahashi K. Future perspectives for spintronic devices // J. Phys. D.: Appl. Phys. 2014. V. 47. P. 193001-1-40.
  44. Nagasaka K., Jogo A., Ibusuki T., Oshima H., Shimizu Y., Uzumaki T. CPP-GMR technology for future high-density magnetic  recording // Fujitsu Sci. Tech. J. 2006. V. 42. P. 149–157.
  45. Hirohata A., Sagar J., Lari L., Fleet L.R., Lazarov V.K. Heusler-alloy films for spintronic devices // Appl. Phys. A. 2013. V. 111. P. 423–430.
  46. Ферт А. Происхождение, развитие и перспективы спинтроники // УФН. 2008. Т. 178. С. 1336–1348.
  47. Huang W., Yang S., Li X. Multiferroic heterostructures and tunneling junctions // J. Materionics. 2015. V. 2015. P. 1–22.
  48. Hirohata A., Sukegawa H., Yanagihara H., Zutic I., Seki T., Mizukami S., Swaminathan R. Roadmap for emerging materials for spintronic device applications // IEEE Trans. Magn. 2015. V. 51. P. 1–11.
  49. Marchon B., Pitchford T., Hsia Y.-T., Gangopadhyay S. The head-disk interface roadmap to an areal density of 4 Tbits/in2 //Adv. Tribol. 2013. V. 2013. P. 521086-1-8.
  50. Wang S., Wang Y., Victora R.H. Shingled magnetic recording on bit patterned media at 10 Tb/in2 // IEEE Trans. Magn. 2013. V. 49. P. 3644–3647.
  51. Suess D., Vogler C., Abert C., Bruckner F., Wind R., Breth L. Fundamental limits in heat assisted magnetic recording and methods to overcome it with exchange spring structures // J. Appl. Phys. 2015. V. 117. P. 163913-1-9.
  52. Okamoto S., Kikuchi N., Furuta M., Kitakami O., Shimatsu T. Microwave assisted magnetic recording technologies and related physics // J. Phys. D: Appl. Phys. 2015. V. 48. P. 353001-1-7.
  53. Victora R.H., Morgan S.M., Momsen K., Cho E., Erden M.F. Two-dimensional magnetic recording at 10 Tbits/in2// IEEE Trans. Magn. 2012. V. 48. P. 1697–1703.
  54. Kovacs A., Oezelt H., Schabes M.E., Schrefl T. Numerical optimization of writer and media for bit patterned magnetic recording // J. Appl. Phys. 2016. V. 120. P. 013902-1-6.
  55. Teo K.K., Elidrissi M.R., Chan K.S., Kanai Y. Analysis and design of shingled magnetic recording systems // J. Appl. Phys. 2012. V. 111. P. 07B716-1-5.
  56. Li X.G., Liu Z.J., Kang A.G., Xie X.Y. Writing field analysis for shingled bit-patterned magnetic recording // J. Nanomater. 2017. V. 2017. P. 1–9.
  57. Vogler C., Abert C., Bruckner F., Suess D., Praetorius D. Heat-assisted magnetic recording of bit-patterned media beyond 10 Tb/in2 // Appl. Phys. Lett. 2016. V. 108. P. 102406-1-6.
  58. Zhou N., Traverso L.M., Xu X. Power delivery and self-heating in nanoscale near-field transducer for heat-assisted magnetic recording// Nanotechnology. 2015. V. 26. P. 134001-1-7.
  59. Busyatras W., Warisarn C., Okamoto Y., Nakamura Y., Myint L.M., Supnithi P., Kovintayewat P. Utilization of multiple read heads for TMR prediction and correction in bit-patterned media recording // AIP Adv. 2017. V. 7. P. 056501-1-5.
  60. Scheunert G., Cohen S.R., Kullock R. et al. Grazing-incidence optical magnetic recording with super-resolution // Beilstein J. Nanotech. 2017. V. 8. P. 28–37.
  61. Vogler C., Abert C., Bruckner F., Suess D. Efficiently reduction transition curvature in heat-assisted magnetic recording with stateof-the-art write heads // J. Phys.: Comp. Phys. 2017. V. 50. P. 54–57.
  62. Zhang M., Zhou T., Yuan Z. Analysis of switchable spin-torque oscillator for microwave assisted magnetic recording // Adv. Cond. Matter. Phys. 2015. V. 2015. P. 457456-1-6.
  63. Dumas R.K., Sani S.R., Mohseni S.M. et al. Recent advances in nanocontact spin-torque oscillators // IEEE Trans. Magn. 2014. V. 50. P. 4100107-1-7.
  64. Пятаков А.П., Звездин А.К. Магнитоэлектрические материалы и мультиферроики // УФН. 2012. Т. 182. С. 593–621.
  65. John R., Berrita M., Hinzke D., Muller C. at al. Magnetization switching of FePt nanoparticle recording medium by femtosecond  laser pulses // Sci. Rep. 2017. V. 7. P. 4114–4117.
  66. Шадров В.Г., Дмитриева А.Э., Болтушкин А.В. Суперпарамагнитный предел и термостабильность сред магнитной записи // Успехи современной радиоэлектроники. 2018. № 1. С. 9–19.

 

Дата поступления: 13 декабря 2017 г.