350 руб
Журнал «Успехи современной радиоэлектроники» №2 за 2017 г.
Статья в номере:
Магнитные среды для термоассистированной магнитной записи
Авторы:
В.Г. Шадров - к.ф.-м.н., вед. науч. сотрудник, ГНПО «НПЦ НАН Беларуси по материаловедению» А.В. Болтушкин - к.ф.-м.н., вед. науч. сотрудник, ГНПО «НПЦ НАН Беларуси по материаловедению» А.Э. Дмитриева - мл. науч. сотрудник, ГНПО «НПЦ НАН Беларуси по материаловедению» E-mail: nemtsevich@ifttp.bas-net.by
Аннотация:
Рассмотрена технология термоассистированной магнитной записи, в основе которой лежит локальный нагрев записывающей среды для уменьшения коэрцитивной силы ниже поля записи, которая предполагает значительное уменьшение среднего термостабильного размера зерна в упорядоченных L10 сплавах на основе FePt и увеличение поверхностной плотности магнитной записи до 1,5-5 Тб/дюйм2. Проанализированы основные параметры магнитных сред термоассистированной записи, используемые магнитные материалы, а также альтернативные высокоанизотропные материалы и концепции сред магнитной записи.
Страницы: 62-74
Список источников

 

  1. Stamps R. et al. The 2014 magnetism roadmap // J. Phys. D.: Appl. Phys. 2014. V. 47. P. 33301-1?28.
  2. Richter H.J. The transition from longitudinal to perpendicular recording // J. Phys. D.: Appl. Phys. 2007. V. 40. P. R.149-R177.
  3. Piramanayagam S.N., Srinvasan K. Recording media research for future hard disk drives// J. Magn. Mater. 2009. V. 321. P. 485-494.
  4. Plumer M.L. et al. New paradigms in magnetic recording // Physics in Canada. 2011. V. 67. P. 25-29.
  5. Weller D., Moser A. Thermal effect limits in ultrahigh-density magnetic recording // IEEE Trans. Magn. 1999. V. 35. P. 4423-4439.
  6. Terris B.D., Thomson T. Nanofabricated and self-assembled magnetic structures  as data storage media // J. Phys. D: Appl. Phys. 2005. V. 38. P. R.199-222.
  7. Rottmayer R.E. et al. Heat-assisted magnetic recording// IEEE Trans. Magn. 2006. V.42. P. 2417-2421.
  8. Zhu J.G. et al. Microwave assisted magnetic recording // IEEE Trans. Magn. 2008. V. 44. P. 125-131.
  9. Wang F., Xu X.-H. Writability issues in high-anisotropy perpendicular magnetic recording media // Chin. Phys. B. 2014. V. 23. № 3. P. 036802-1-12.
  10. Victora R. H., Shen X. Exchange coupled composite media for perpendicular magnetic recording // IEEE Trans. Magn. 2005 V. 41. P. 2828-2833.
  11. Kryder M.H. et al. Heat assisted magnetic recording // IEEE Trans. Magn. 2008. V. 96. P. 1810-1835.
  12. Weller D. et al. L10 FePtX-Y media for heat-assisted magnetic recording // Phys. Stat. Sol. A. 2013. V. 210. P. 1245-1260.
  13. Wu A. et al. HAMR areal density demonstration of 1+ Tbpsi on spin-stand // IEEE Trans. Magn. 2013. V. 49. P. 779-782.
  14. Wang X. et al. HAMR recording limitations and extendibility // IEEE Trans. Magn. 2013. V. 49. P. 696-692.
  15. Weller D. et al. A HAMR media technology roadmap to an areal density of 4 Tb/in2 // IEEE Trans. Magn. 2014. V. 50. P. 3100108‑1‑8 .
  16. Zhou N. et al. Power delivery and self-heating in nanoscale near-field transducer for heat-assisted magnetic recording // Nanotechnology. 2015. V.26. P. 134001-1-7.
  17. Rausch T. et al. HAMR drive performance and integration challenges // IEEE Trans. Magn. 2013. V. 49. P. 730-733.
  18. Challener WA. et al. Heat-assisted magnetic recording by a near-field transducer with efficient optical energy transfer // Nat. Photon. 2009.V. 3. P. 220-224.
  19. Hirata M. et al. Light delivery system for heat-assisted magnetic recording // IEEE Trans. Magn. 2009. V.45. P. 5016-5021.
  20. Yang R. et al. Far-field head-media optical interaction in heat-assisted magnetic recording // Appl. Opt. 2016.V. 55. P. 1241-1248.
  21. Ashizawa Y. et al. Highly efficient waveguide using surface plasmon polaritons for thermally assisted magnetic recording // J. Magn. Soc. Jpn. 2013. V. 37. P. 111-114.
  22. Zhou N. et al. Plasmonic near-field transducer for heat-assisted magnetic recording // Nanophotonics. 2014. V. 3. P. 141-155.
  23. Hu J.F. et al. In-line sputter system prepared L10 ordered FePt granular film for HAMR application // IEEE Trans. Magn.2013.V. 49. P. 2703-2706.
  24. Hu J.F. et al. Microstructure control of L10 ordered FePt granular film for HAMR application // IEEE Trans. Magn. 2013. V. 49. P. 3737-3739.
  25. Xu B.X. et al. Thermal issues and their effects on heat-assisted magnetic recording system // J. Appl. Phys. 2012. V. 111. P. 07B701‑1‑4.
  26. Xu Y. et al. In situ ordering of FePt thin films with face-centered-tetragonal (001) texture on  Cr100−xRux underlayer at low substrate temperature // Appl. Phys. Lett. 2002.V. 80. P. 3325-3328.
  27. Chen J.S. et al. Low-temperature deposition of L10 FePt films for ultra-high density magnetic recording // J. Magn. Mater. 2006. V. 303. P. 309-312.
  28. Yang E. et al. Buffer layers of highly ordered L10 FePt-oxide thin film granular media at reduced processing temperature // IEEE Trans. Magn. 2010. V. 46. P. 2446-2449.
  29. Ho H. et al. Effect of RuAl and TiN underlayers on grain morphology, ordering, and magnetic properties of FePt-SiO thin films // IEEE Tran. Magn. 2013. V. 49. P. 3663-3666.
  30. Yang E. et al. Structure and magnetic properties of L10-FePt thin films on TiN/RuAl underlayers // J. Appl. Phys. 2011. V. 109. P. 07B770-1-3.
  31. Sun H.Y. et al. Magnetic properties and microstructures of FePt∕Ti bilayer films sputter deposited onto glass amorphous substrates //Appl. Phys. Lett. 2006. V. 88. P. 192501-1-4.
  32. Hsu Y.-N. et al. In situ ordering of FePt thin films by using Ag/Si and Ag/ Mn3Si /Ag/Si templates // IEEE Trans. Magn. 2000. V. 36. P. 2945-2947.
  33. Yang E. et al. Epitaxial growth of L10 FePt granular thin films on TiC/RuAl underlayers // IEEE Trans. Magn.2011. V. 4.  P. 4077-4079.
  34. Li H.H. et al. High coercive FePt and FePt-SiNx(001) films with small grain size and narrow opening-up of in-plane hysteresis loop by TiN intermediate layer // J. Appl. Phys. 2011. V. 110. P. 043911-1-4.
  35. Kuo C.-M. et al. Effects of W and Ti on the grain size and coercivity of Fe50Pt50 thin films // J. Magn. Mater. 2000. V. 209.  P. 100-102.
  36. Hsu Y. et al. Effects of Ag underlayers on the microstructure and magnetic properties of epitaxial FePt thin films // J. Appl. Phys. 2001. V. 89. P. 7068-7070.
  37. Chen S.C. et al. Effects of Ag bufer layer on the microstructure and magnetic properties of nanocomposite FePt/Ag multilayer films // J. Appl. Phys. 2005. V. 97. P. 10N107-1-4.
  38. Shen W.K. et al . In situ epitaxial growth of ordered FePt (001) films with ultra small and uniform grain size using a RuAl underlayer // Phys. 2005. V. 97. P. 10H301-1-3.
  39. Peng Y. et al. L10 FePt-MgO perpendicular thin film deposited by alternating sputtering at elevated temperature // J. Appl. Phys. 2006.V. 99. P. 08F907-1-3.
  40. Kang K. et al. Composite nanogranular films of FePt-MgO with (001) orientation onto glass substrates // Appl. Phys. Lett. 2004. V. 84. P. 404-408.
  41. Jeong S. et al. Structure and magnetic properties of L10 CoPt(Ag/MgO, MgO) thin films // J. Appl. Phys. 2000. V. 87. P. 6950-6952.
  42. Lim B.C. et al. Improvement of chemical ordering of FePt (001) oriented films by MgO buffer layer // J. Appl. Phys. 2008. V. 103. P. 07E143-1-4.
  43. Chen J.S. et al. Structure and magnetic properties of L10 FePt film with Ag heat sink layer // J. Appl. Phys. 2009. V. 105. P. 07B724-1-4.
  44. Platt C.L. et al. L10 ordering and microstructure of FePt thin films with Cu, Ag, and Au additive // J. Appl. Phys. 2002. V. 92. P. 6104-6108.
  45. Thiele J.-U. et al. Magnetic and structural properties of FePt-FeRh exchange spring films for thermally assisted magnetic recording media// IEEE Trans. Magn. 2004. V. 40. P. 2537-2539.
  46. Thiele J.-U. et al. FeRh/FePt exchange spring films for thermally assisted magnetic recording media// Appl. Phys. Lett. 2003. V. 82. P. 2859-2861.
  47. Kikitsu A. et al. A concept of exchange-coupled recording medium for heat-assisted magnetic recording // J. Appl. Phys. 2005. V. 97. P. 10P701-1-4.
  48. Ruigrok J.J.M. et al. Disk recording beyond 100 Gb/in2: Hybrid recording //J. Appl. Phys. 2000. V. 87. P. 5398 - 5401.
  49. Nemoto H. et al. Exchange-coupled magnetic bilayer media for thermomagnetic writing and flux detection // Jpn. J. Appl. Phys. 1999. V. 38. P. 1841-1842.
  50. Yan M.L. et al. Highly (001)-oriented Ni-doped L10 FePt films and their magnetic properties //J. Appl. Phys. 2005. V. 97. P. 10H309-1-4.
  51. Willoughby S.D. Electronic and magnetic properties of Fe 1−x Cu x Pt // J. Appl. Phys. 2004. V. 95. P. 6586-6589.
  52. Yan M.L. et al. Nanostructure and magnetic properties of highly (001) oriented L10 (Fe 49 Pt 51) 1−x Cu x films // J. Appl. Phys. 2006. V. 99. P. 08G903-1-3.
  53. Gilbert D.A. et al. Tuning magnetic anisotropy in (001) oriented L10 (Fe1−xCux)55Pt45 films // Appl. Phys. Lett. 2013. V. 102. P. 132406-1-4.
  54. Thiele J.-U. et al.Temperature dependent magnetic properties of highly chemically ordered Fe55-xNixPt45 L10 films // J. Appl. Phys. 2002. V. 91. P. 6595-6600.
  55. Seki T.O. et al. Microstructure and magnetic properties of FePt- SiO2 granular films with Ag addition // J. Appl. Phys. 2008. V. 103. P. 023910-1-4.
  56. Maeda T. et al. Reduction of ordering temperature of an FePt-ordered alloy by addition of Cu // Appl. Phys. Lett. 2002. V. 80. P. 2147-2150.
  57. Mosendz O. et al. Ultra-high coercivity small-grain FePt media for thermally assisted recording // J. Appl. Phys. 2012. V. 111. P. 07B729-1-4.
  58. Ding Y.F. et al. Granular L10 FePt:TiO2 (001) nanocomposite thin films with 5 nm grains for high density magnetic recording // Appl. Phys. Lett. 2008, V. 93. P. 032506-1-5.
  59. Lim D.C. et al. Grain isolated L10 FePt-Ta2O5 nanocomposite films with large coercivity for perpendicular recording applications // J. Appl. Phys. 2009. V. 105. P. 07A730-1-4.
  60. Zhang L. et al. L10 ordered FePtAg-C granular thin film for thermally assisted magnetic recording media // J. Appl. Phys. 2011. V. 109. P. 07B703-1-4.
  61. Perumal A. et al. L10 FePt-C nanogranular perpendicular anisotropy films with narrow size distribution // Appl. Phys. Exp. 2008. V. 1. P. 101301-1-4.
  62. Sáfrán G. et al. Nano-structure formation of Fe-Pt perpendicular magnetic recording media co-deposited with MgO, Al2O3 and SiO2 additives // Thin solid films 2006. V. 496. P. 580-585.
  63. Varaprasad B.S. et al. L10-ordered FePt-based perpendicular magnetic recording media for heat-assisted magnetic recording // IEEE Trans. Magn. 2013. V. 49. P. 718-721.
  64. Shiroyama T. et al. Microstructure and magnetic properties of FePt-MOx granular films // IEEE Trans. Magn. 2013.V. 49.  P. 3616-3619.
  65. Sun A.C. et al. Microstructural and magnetic studies of L10 FePt-SiO2 nano-composite thin film with columnar structure for perpendicular magnetic recording // J. Magn. Mater. 2008. V. 320. P. 3071-3074.
  66. Yang E., Laughlin D.E. L10 FePt-oxide columnar perpendicular media with high coercivity and small grain size // J. Appl. Phys. 2008. V. 104. P. 023904-1-3.
  67. Ding Y.F. et al. Granular L1 0 FePt:TiO2 (001) nanocomposite thin films with 5nm grains for high density magnetic recording // Appl. Phys. Lett. 2008. V. 93. P. 032506 -1-3.
  68. Yu M. et al. Nanocomposite CoPt:C films for extremely high-density recording // Appl. Phys. Lett. 1999. V.75. P. 3992-3996.
  69. Bai J. et al. Nano-composite FePt-Al2O3 films for high-density magnetic recording // J. Magn. Mater. 2003. V. 257. P. 132-137.
  70. Chen S.C. et al. Microstructure and coercivity of granular FePt-AlN thin films// J. Magn. Mater. 2001. V. 23. P. 151-157.
  71. Yan M.L. et al. L10 ordered FePt:C composite films with (001) texture// IEEE Trans. Magn. 2004. V. 40. P. 2470-2472.
  72. Chen J.S. et al. Low temperature deposited L10 FePt-C (001) films with high coercivity and small grain size // Appl. Phys. Lett. 2007. V. 91. P. 132506-1-3.
  73. Luo C.P. et al. Nanostructured FePt:B2O3 thin films with perpendicular magnetic anisotropy // Appl. Phys. Lett. 2000. V. 77. P. 2225-2229.
  74. Dong K.F. et al. Well-isolated L10 FePt-SiN x - C nanocomposite films with large coercivity and small grain size // J. Appl. Phys. 2012. V. 111. P. 07A308-1-3.
  75. Ho H. et al.  Multiple oxide content media for columnar grain growth in L10 FePt thin films // Appl. Phys. Lett. 2013. V. 102. P. 112411-1-3.
  76. Yan M.L. et al. L10 (001)-oriented FePt: B2O3 composite films for perpendicular recording // J. Appl. Phys. 2002. V. 91.  P. 8471-8473.
  77. Kang K. et al .Structure and magnetic studies of nanocomposite FePt-MgO films for perpendicular magnetic recording applications // J. Appl. Phys. 2004. V. 95. P. 7273-7275.
  78. Шадров В.Г. Межкристаллитное магнитное взаимодействие и свойства магнитных наноструктур. Минск: Изд-во БГУ. 2010.
  79. Jeong S. et al. Atomic ordering and coercivity mechanism in FePt and CoPt polycrystalline thin films // IEEE Trans. Magn. 2001. V. 37. P. 1299-1301.
  80. Jeong S. et al. Magnetic properties of nanostructured CoPt and FePt thin films // IEEE Trans. Magn. 2000. V. 36. P. 2336-2338.
  81. Chang Y.C. et al. Influence of stoichiometry and growth temperature on the crystal structure and magnetic properties of epitaxial L10 Fe-Pd (001) films // J. Appl. Phys. 2014. V. 115. P. 17A740-1-4.
  82. Fan W.J. et al. Control of the exchange coupling in granular CoPt/Co recording media // J. Appl. Phys. 2011. V. 109. P. 07B752-1-3.
  83. Sayama J. et al. Thin films of SmCo5 with very high perpendicular magnetic anisotropy // Appl. Phys. Lett. 2004 V. 85.  P. 5640-5643.
  84. Takahashi Y.K. et al. Microstructure and magnetic properties of SmCo5 thin films deposited on Cu and Pt underlayers // J. Appl. Phys. 2006.V.100. P. 053 913-1-3.
  85. Sayama J. et al. Magnetic properties and microstructure of SmCo5 thin film with perpendicular magnetic anisotropy // J. Magn. Mater. 2005. V. 287. P. 239-241.
  86. Liu X. et al. Magnetization reversal mechanism of Nd-Fe-B films with perpendicular magnetic anisotropy // J. Appl. Phys. 2011. V. 109. P. 07A725 -1-4.
  87. Ohtake M. et al. Preparation and structure characterization of Sm Co5 (0001) epitaxial thin films grown on Cu(111) underlayers // J. Appl. Phys. 2009. V. 105. P. 07C315-1-4.
  88. Roy A. et al. Seed-layer effect on the microstructure and magnetic properties of Co/Pd multilayers // J. Appl. Phys. 2001. V. 89. P. 7531-7533.
  89. Kawada Y. et al. Co-Pt multilayers perpendicular magnetic recording media with thin Pt layer and high perpendicular anisotropy // IEEE Trans. Magn. 2002. V. 38. P. 2045-2047.
  90. Kawada Y. et al. Magnetic properties, microstructure and read-write performance of CoSiO2-Pt granular multilayer perpendicular recording media // IEEE Trans. Magn. 2004. V. 40. P. 2489-2491.
  91. Kikitsu A. Prospects for bit patterned media for high-density magnetic recording // J. Magn. Magn. Mater. 2009. V. 321. P. 526-530.
  92. Gavrila H. Coupled granular/continuous media for perpendicular magnetic recording // Proc. Roman. Acad. A 2010. V. 11. P. 41-46.
  93. Suess D. et al. Effect on intergranular exchange on the thermal stability and coercive field of perpendicular, single phase, exchange spring and CGC perpendicular recording media // IEEE Trans. Magn. 2009. V. 45. P. 88-99.
  94. Han G.C. et al. Magnetic stability of ultrathin FeRh films // J. Appl. Phys. 2013. V. 113. P. 17C107-1-3.
  95. Suess D. et al. Exchange spring recording media for areal densities up to 10 Tbit/in2 // J. Magn. Magn. Mater. 2005. V. 290-291. P. 551-554.
  96. Makarov D. et al. Perpendicular FePt based exchange coupled composite media // Appl. Phys. Lett. 2010. V. 96. P. 062501-1-4.
  97. Ma B. et al. Structural and magnetic properties of a core-shell type L10 FePt/Fe exchange coupled nanocomposite with tilted easy axis // J. Appl. Phys. 2011. V. 109. P. 083907-1-5.
  98. Suess D. Exchange-coupled perpendicular media // J. Magn. Magn. Mater. 2009. V. 321. P. 545-548.
  99. Goll D. et al. Experimental realization of graded L10-FePt/Fe composite media with perpendicular magnetization // J. Appl. Phys. 2008. V. 104. P. 083903-1-3.
  100. Guo H.H. et al. Microstructure and magnetization reversal of L10-FePt/[Co/Pt]N exchange coupled composite films // Appl. Phys. Lett. 2012. V. P. 142406-1-4.
  101. Alexandrakis V. et al. Hard/graded exchange spring composite media based on FePt // J. Appl. Phys.2011. V. 109. P. 07B729-1-4.
  102. Shiroishi Y. et al. Future options for HDD storage // IEEE Trans. Magn. 2009. V. 45. P. 3816-3822.
  103. Xiong S. et al. A two-stage heating scheme for heat assisted magnetic recording // J. Appl. Phys. 2014. V. 115. P. 17B702-1-3.
  104. Ruigrok J.J.M. Limits of conventional and thermally-assisted recording // J. Magn. Soc. Jpn. 2001. V. 25. P. 313-316.
  105. McDaniel T.W. Ultimate limits to thermally assisted magnetic recording // J. Phys.: Cond. Matter. 2005. V. 17. P. R315-R332.
  106. Wood R. et al. The feasibility of magnetic recording at 10 Tb/inch2 on conventional media // IEEE Trans. Magn. 2009. V. 445. P. 917-923.
  107. Charap S.U. Thermal stability of recorded information at high densities // IEEE Trans. Magn. 1997. V. 33. P. 978 - 983.
  108. Evans R.F.L. et al. Thermally induced error: Density limit for magnetic data storage // Appl. Phys. Lett. 2012. V. 100.  P. 102402-1-3.
  109. Richter H.J. et al. The thermodynamic limits of magnetic recording // J. Appl. Phys. 2012. V. 111. P. 033909-1-8.
  110. Suess D., Schrefl T. Breaking the thermally induced write error in heat assisted recording by using low and high Tc materials // Appl. Phys. Lett. 2013. V. 102. P. 162405-1-4.
  111. Vahaplar K. et al. Ultrafast path for optical magnetization reversal via a strongly nonequilibrium state // Phys. Rev. Lett. 2009. V. 103. P. 117201-1-4.