350 руб
Журнал «Успехи современной радиоэлектроники» №6 за 2015 г.
Статья в номере:
Распределение полей перемагничивания и магнитное поведение структурированных сред магнитной записи
Авторы:
В.Г. Шадров - к.ф.-м.н., вед. науч. сотрудник, ГНПО «НПЦ НАН Беларуси по материаловедению» Л.В. Немцевич - науч. сотрудник, ГНПО «НПЦ НАН Беларуси по материаловедению» А.В. Болтушкин - к.ф.-м.н., ст. науч. сотрудник, ГНПО «НПЦ НАН Беларуси по материаловедению». E-mail: nemtsevich@ifttp.bas-net.by
Аннотация:
На основе анализа исследований доменной структуры, кривых необратимой восприимчивости и угловых зависимостей гистерезисных характеристик исследована связь процессов перемагничивания структурированных сред магнитной записи с магнитным взаимодействие отдельных магнитных элементов (частиц), распределением полей перемагничивания, технологическими условиями получения и эксплуатационными характеристиками.
Страницы: 51-59
Список источников

 

  1. Piramanayagam S.N. Perpendicular recording media for hard disk drives // J. Appl. Phys. 2007. V. 102. P. 011301-1?22.
  2. Terris B.D. Fabrication challenges for patterned recording media // J. Magn. Mater. 2009. V. 321. P. 512-517.
  3. Terris B.D., Thomson T. Nanofabricated and self-assembled magnetic structures as data storage media // J. Phys. D: Appl. Phys. 2005. V. 38. P. 199-222.
  4. Ross C.A. Patterned magnetic recording media // Ann. Rev. Mater. Res., 2001. V. 31. P. 203-235.
  5. Sbia R., Piramanayagam S.N. Patterned media towards nano-bit magnetic recording: fabrication and challenges // Rec. Pat. Nanotech. 2007. V. 1. P. 29-40.
  6. Moser A. et al. Magnetic recording: advancing into the future // J. Phys. D.: Appl. Phys. 2002. V. 35. P. 157-167.
  7. Elbagi N. et al. Role of dipolar interactions on the thermal stability of high-density bit-patterned media // IEEE Magn. Lett. 2012. V. 3. P. 4500204-1?4.
  8. Basu S. et al. Control of the switching behaviour of ferromagnetic nanowires using magnetostatic interactions // J. Appl. Phys. 2009. V. 105. P. 083901-1?6.
  9. Hovorka O. et al. Rate-dependence of the switching field distribution in nanoscale granular magnetic materials // Appl. Phys. Lett. 2010. V. 97. P. 062504-1?3.
  10. Tabasum M.R. et al.Magnetic force study of the switching field distribution of low density arrays of single domain magnetic nanowires // J. Appl. Phys. 2013. V. 113. P. 183908-1?5.
  11. Chantrell R.W., O-Grady K. Magnetic characterization of recording media // J. Phys. D: Appl. Phys. 1992. V. 25. P. 1-23.
  12. Pike C.R. et al. First-order reversal curve diagram analysis of a perpendicular nickel nanopillar array // Phys. Rev. B. 2005. V. 71. P. 134407-1?7.
  13. Berger A. et al. ∆H(M, ∆M) method for the determination of intrinsic switching field distributions in perpendicular media // IEEE Trans. Magn. 2005. V. 41. P. 3178-3180.
  14. Tabasum M.R. et al.Intrinsic switching field distribution of arrays of Ni80Fe20 nanowires probed by in situ magnetic force microscopy // J. Supercond. Nov. Magn. 2013. V. 26. P. 1375-1379.
  15. Abes M. et al. Magnetic switching field distribution of patterned CoPd dots // J. Appl. Phys. 2009. V. 105. P. 113916-1?8.
  16. Shaw J.M. et al.Origins of switching field distributions in perpendicular magnetic nanodot arrays // J. Appl. Phys. 2007. V. 101. P. 023909-1?4.
  17. Krone P. et al. Investigation of the magnetization reversal of a magnetic dot array of Co/Pt multilayers // J. Nanopart. Res. 2011. V. 13. P. 5587-5593.
  18. Plau B. et al. Origin of magnetic switching field distribution in bit patterned media based on pre-patterned substrates // Appl. Phys. Lett. 2011. V. 99. P. 062502-1?3.
  19. Lau J.W. et al. Microstructural origin of switching field distribution in patterned Co/Pd multilayer nanodots // Appl. Phys. Lett. 2008. V. 92. P. 012506-1?5.
  20. Hellwig O. et al. Bit patterned media based on block copolymer directed assembly with narrow magnetic switching field distribution // Appl. Phys. Lett. 2010. V. 96. P. 052511-1?3.
  21. Zheng Y., Zhu J.-G. Switching field variation in patterned submicron magnetic film elements // J. Appl. Phys. 1997. V. 81. P. 5471‑5473.
  22. Skomski R. Nanomagnetics // J. Phys. F: Cond. Mater. 2003. V.15.P. 841-896.
  23. Шадров В.Г. Межкристаллитное магнитное взаимодействие и свойства магнитных наноструктур / Минск: Изд-во БГУ. 2010.
  24. Majetich S.A., Sachan M. Magnetostatic interactions in magnetic nanoparticle assemblies: energy, time and length scales // J. Phys. D: Appl. Phys. 2006. V. 39. P. 407-422.
  25. Hovorka O. et al. Simultaneous determination of intergranular interactions and intrinsic switching field distributions in magnetic materials // Appl. Phys. Lett. 2009. V. 95. P. 192504-1?3.
  26. Welp U. et al. Magnetization reversal in arrays of individual and coupled Co-rings // J. Appl. Phys. 2003. V. 93. P. 7056-7058.
  27. Zighem F. et al. Dipolar interactions in arrays of ferromagnetic nanowires: A micromagnetic study // J. Appl. Phys. 2011. V. 109. P. 013910-1?8.
  28. Aharoni A. Introduction to the theory of ferromagnetism / Oxford University Press. New York. 2001.
  29. Nakamura J., Iwasaki S. Magnetization models of Co-Cr film for the computer simulation  of perpendicular magnetic recording process // IEEE Trans. Magn. 1987. V. 23. P. 153-157.
  30. Huysmans G.T.A., Lodder J.C., Wakui J. Magnetization curling in perpendicular iron particle arrays (alumite media) // J. Appl. Phys. 1988. V. 64. P. 2016-2021.
  31. Hovorka O. et al. On the ability to determine intrinsic switching field distributions from hysteresis loops in the partially correlated magnetization reversal regime // J. Magn. Magn. Mater. 2010. V. 322. P.459-468.
  32. Шадров В.Г. Временные магнитные эффекты и термостабильность носителей магнитной записи // Успехи современной радиоэлектроники. 2005. №12. С.70-76.
  33. Weller D., Moser A. Thermal effect limits in ultrahigh-density magnetic recording // IEEE Trans. Magn. 1999. V. 35. P. 4423-4439.
  34. Bedanta S., Kleemann W. Supermagnetism // J. Phys. D.: Appl. Phys. 2009. V. 42. P. 013001-1?28.
  35. Albrecht M. et al. Thermal stability and recording properties of sub-100 nm patterned CoCrPt perpendicular media // J. Appl. Phys. 2002. V. 91. P. 6845-6848.
  36. Asbahi M. et al. Recording performance in perpendicular magnetic patterned Media // J. Phys. D: Appl. Phys. 2010. V. 43. P. 385003-1?5.
  37. Charap S.U. Thermal stability of recorded information at high densities // IEEE Trans. Magn. 1997. V. 33. P. 978-983.
  38. Rottmayer R.E. et al.Heat-assisted magnetic recording // IEEE Trans. Magn. 2006. V. 42. P. 2417-2421.
  39. Victora R.H., Shen X. Composite media for perpendicular magnetic recording // IEEE Trans. Magn. 2005. V. 41. P. 537-542.
  40. Suess D.Multilayer exchange spring media for magnetic recording // Appl. Phys. Lett. 2006. V. 89. P. 113105-1?3.
  41. Ma B. et al.Core-shell exchange coupled nanocomposites for ultrahigh recording density // IEEE Trans. Magn. 2010. V. 46. P. 2345-2349.
  42. Шадров В.Г., Немцевич Л.В.Межкристаллитное магнитное взаимодействие в тонкопленочных средах магнитной записи // Успехи современной радиоэлектроники. 2010. №8. С.34-42.
  43. Hauet T. et al. Role of reversal incoherency in reducing switching field and switching field distribution of exchange couple composite bit patterned media // Appl. Phys. Lett. 2009. V. 95. P. 262504-1?3.
  44. Bertram H.N., Longsfield B. Energy barriers in composite media grains // IEEE Trans. Magn. 2007. V. 43. P. 2145-2147.
  45. Wiedwald U. et al. Tuning the properties of magnetic thin films by interaction with periodic nanostructures // Beilstein J. Nanotech. 2012. V. 3. P. 831-842.
  46. Thomson T. et al. Magnetic anisotropy and reversal mechanisms in dual layer exchanged coupled perpendicular media // J. Appl. Phys. 2008. V. 103. P. 0754.
  47. Goll D., Macke S. Thermal stability of ledge-type L10-FePt/Fe exchange spring nanocomposites for ultrahigh recording density // Appl. Phys. Lett. 2008. V. 93. P. 152512-1?3.
  48. Fassbender J., McCord J. Magnetic patterning by means of ion irradiation and implantation // J. Magn. Magn. Mater. 2008. V. 320. P. 579-596.
  49. Krone P. et al. Nanocap arrays of granular CoCrPt: SiO2films on silica particles: tailoring of the magnetic properties by Co+irradiation // Nanotechnology. 2010. V. 21. P. 385703-1?7.
  50. Sohn J.-S. et al.The fabrication of Co-Pt electrodeposited bit patterned media with nanoimprint lithography // Nanotechnology. 2009. V. 20. P. 025302-1?5.
  51. Sendur K., Challener W. Patterned medium for heat assisted magnetic recording // Appl. Phys. Lett. 2009. V. 94. P. 032503-1?3.
  52. Bader S.D. Colloquim: Opportunities in nanomagnetism // Rev. Mod. Phys. 2006. V. 78. P. 1-15.