350 руб
Журнал «Успехи современной радиоэлектроники» №7 за 2013 г.
Статья в номере:
Современные достижения в области фотонных технологий обработки радиосигналов, использующих эффекты выжигания спектральных провалов и фотонного эха
Авторы:
О.А. Голосовский - к.т.н., ст. науч. сотрудник, «Южный федеральный университет» Технологический институт в г. Таганроге. E-mail: golos@pbox.ttn.ru В.В. Роздобудько - д.т.н., гл. науч. сотрудник, профессор, кафедра РТЭ, «Южный федеральный университет» Технологический институт в г. Таганроге. E-mail: labar_t@tsure.ru
Аннотация:
Приведен обзор мировых достижений в области фотонных технологий, использующих эффекты выжигания спектральных провалов и фотонного эха для спектрометрии и обработки радиосигналов. Рассмотрены различные архитектуры устройств. Показана перспективность развития этой технологии, сочетающей десятки гигагерц мгновенной полосы рабочих частот с субмегагерцевой разрешающей способностью, функциональную гибкость и низкую потребляемую мощность. Отмечено уникальное преимущество, позволяющее оперативно изменять алгоритмы обработки,  качество, которое до сих пор было присуще только цифровым процессорам. Перечислены основные проблемы, лежащие на пути ее практического внедрения. Однако эти проблемы не являются непреодолимыми, что подтверждается уже созданными лабораторными образцами устройств, демонстрирующими вышеперечисленные преимущества.
Страницы: 3-25
Список источников

  1. Szabo A. Observation of the Optical Analog of the Mossbauer Effect in Ruby // Physical Review Letters. 1971. V. 27. P. 323-326.
  2. Kharlamov B.M., Personov R.I., Bykovskaya L.A. Stable "gap" in absorption spectra of solid solutions of organic molecules by laser irradiation // Optics Communications. 1974. V. 12. P. 191.
  3. Гороховский А.А., Каарли Р.К., Ребане А.К. Выжигание провала в контуре чисто электронной линии в системах Шпольского // Письма В ЖЭТФ. 1974. T. 20. № 7. С. 474-479.
  4. Böttger T. Laser Frequency Stabilization to Spectral Hole Burning Frequency References in Erbium - doped Crystals: Material and Device Optimization/Ph.D. thesis, Montana State University, 2002. URL: http: // physics.usfca.edu/ tbottger /Research/ publications.html.
  5. Principles of Persistent Spectral Hole Burning. 2011. URL: http: // www.physics.montana.edu/faculty/rebane /Research/ Tutorials/Hole_burning/HoleBurning_00.htm.
  6. Le Gouёt J.-L., Bretenaker F., Lorgere I. Atomic processing of optically carried RF signals // Advances in Atomic, Molecular and Optical Physics. 2006. V. 54. URL:http: // hal.archives-ouvertes.fr/docs/00/06/45/30/PDF/finalver2.pdf
  7. Szabo A. Frequency selective optical memory // US patent №. 3896420. 1975. URL: http: // ip.com/pat/US3896420.
  8. Mössberg T.W. Time domain data storage // US patent №. 4459682. 1984. URL: http: // ip.com/pat/US4459682.
  9. Аллен Л., Эберли Дж. Оптический резонанс и двухуровневые атомы. М.: Мир. 1978.
  10. Hahn E.L. Spin echoes // Physical Review. 1950. V. 80. Is. 4. P. 580-594.
  11. Копвиллем У.Х., Нагибаров В.Р. Материалы 9-го Всесоюзного совещания по физике низких температур (26 июня  2 июля 1962 г., Ленинград) // Физика металлов и металловедение. 1963. T. 15. C. 313.
  12. Kurnit N.A., Abella I.D., Hartmann S.R. Observation of a photon echo // Physical Review Letters. 1964. V. 13. P. 567.
  13. Вайнер Ю.Г. Динамика неупорядоченных молекулярных твердотельных сред: исследования методами фотонного эха и спектроскопии одиночных молекул // Тезисы докторской диссертации. Институт спектроскопии. РАН. 2005. URL: http: // www.isan.troitsk.ru/dms/les_lab/sms /publ /vainer_avtoreferat.pdf.
  14. Cole Z., Bottger T., Krishna Mohan R., Reibel R., Babbitt W.R., Cone R.L., Merkel K.D. Coherent integration of 0.5 GHz spectral holograms at 1536 nm using dynamic biphase codes // Applied Physics Letters. 2002. V. 81. P. 3525-3527.
  15. Merkel K.D., Mohan R.K., Cole Z., Chang T., Olson A., Babbitt W.R. Multi-Gigahertz radar range processing of baseband and RF carrier modulated signals in Tm:YAG // Journal of Luminescence. 2004. V. 107. P. 62-74.
  16. Reibel R., Barber Z., Tian M., Babbitt W.R. Temporally overlapped linear frequency-chirped pulse programming for true-time-delay applications // Optics Letters. 2002. V. 27. P. 494-496.
  17. Braker B.M. Spatial-Spectral Processing for Imaging Systems: Multibeam RF Imaging and Radar Systems using Spectral Hole Burning Materials/Ph.D. thesis, University of Colorado, 2008. URL: http: // gradworks.umi.com/ 3337181.pdf.
  18. Schlottau F., Wagner K.H. Demonstration of a continuous scan­ner and time-integrating correlator using spatial spectral holo­graphy // Journal of Luminescence. 2004. V. 107. P. 90-102.
  19. Merkel K. D., Cole Z., Babbitt W.R. Signal correlator with programmable variable time delay based on optical coherenttransients // Journal of Luminescence. 2000. V. 86. P. 375-382.
  20. Lavielle V., Seze F.D., Lorgere I., Le Gouet J.-L. Wideband radio frequency spectrum analyzer: improved design and experimental results // Journal of Luminescence. 2004. V. 107. P. 75-89.
  21. Mohan R.K., Cole Z., Reibel R.R., Chang T., Merkel K.D., Babbitt W.R., Colice M., Schlottau F., Wagner K.H. Microwave spectral analysis using optical spectral hole burning // Proceedings of the IEEE International Topical Meeting on Microwave Photonics. 2004. P.24-27.
  22. Colice M., Schlottau F., Wagner K., Mohan R.K., Babbitt W.R., Lorgere I., Le Gouet J.-L. RF Spectrum Analysis in Spectral Hole Burning Media // Optical Information Systems II. 2004. B. Javidi and D. Psaltis, eds. Proc. SPIE 5557. P. 132-139.
  23. Gorju G., Crozatier V., Lorgere I., Le Gouёt J.-L., Bretenaker F. 10-GHz bandwidth rf spectral Analyzer with MHz resolution based on spectral hole burning in Tm3+:YAG // IEEE Photonics Technology Letters. 2006. V. 17. P. 2385-2387.
  24. Schlottau F., Colice M., Wagner K.H., Babbitt W.R. Spectral hole burning for wideband, high resolution radio-frequency spectrum analysis // Optics Letters. 2005. V. 30. P. 3003-3005.
  25. Lorgere I., Menager L., Lavielle V., Le Gouёt J.-L., Dolfi D., Tonda S., Huignard J.-P. Demonstration of a radiofrequency spectrum analyzer on spectral hole burning // Journal of Modern Optics. 2002. V. 49. P. 2459-2475.
  26. Lavielle V., Seze F.D., Lorgere I., Le Gouet J.-L. Wideband radio frequency spectrum analyzer: improved design and experimental results // Journal of Luminescence. 2004. V. 107. P.75-89.
  27. Crozatier V., Lavielle V., Bretenaker F., Gouet J. Le, Lorgere I. High-resolution radio frequency spectral analysis with photon echo chirp transform in an Er:YSO crystal // IEEE Journal of Quantum Electronics. 2004. V. 40. P.450-1457.
  28. Böttger T., Thiel C.W., Cone R.L., Sun Y. Rare-earth-doped materials for applications in quantum information storage and signal processing // Journal of Luminescence. 2011. V. 131. P. 353-361.
  29. Böttger T., Thiel C.W., Sun Y, Cone R.L. Optical decoherence and spectral diffusion at 1.5mm in Er3+:Y2SiO5 versus magnetic field, temperature, and Er3+ concentration // Physical Review B. 2006. V. 73. P. 1-16.
  30. Thiel C.W., Macfarlane R., Böttger T., Sun Y, Cone R.L., Babbitt W.R. Optical decoherence and persistent spectral hole burning in Er3+:LiNbO3 // Journal of Luminescence. 2010. V. 130. P. 1603-1609.
  31. Голосовский О.А., Роздобудько В.В. Акустооптические спектрометры: современное состояние и перспективы // Успехи современной радиоэлектроники. 2011. №. 12. C. 43-57.
  32. Chen Q., Troshyn A., Ernsting I., Kayser S., Vasilyev S., Nevsky A., Schiller S. Spectrally narrow, long-term stable optical frequency reference based on Eu3+:Y2SiO5 crystal at cryogenic temperature. 2011. URL: http: // arxiV. org/abs/1107.3764.
  33. Crozatier V. Développement de lasers solides agiles ultra-stables pour la manipulation cohérente de systèmes atomiques. Applications au traitement optique de signaux radiofréquences et à l-information quantique/Thèse présentée pour obtenir le grade de Docteur En Sciences de L-Université Paris-XI, 2006. URL: http: // tel.archives-ouvertes.fr/tel-00097762.
  34. Barber Z., Tian M., Reibel R., Babbitt W. Optical pulse shaping using optical coherent transients // Optics Express. 2002. V. 10. P.11-45.
  35. Abramovici A., Althouse W.E., Drever R.W.P., Gürsel Y., Kawamura S., Raab F.J., Shoemaker D., Sievers L., Spero R. E.,Thorne K.S., Vogt R.E., Weiss R., Whitcomb S.E., and Zucker M.E. LIGO: The Laser-Interferometer Gravitational-Wave Observatory // Science. 1992. V. 256(5055). P. 325-333.
  36. DeVoe R.G., Brewer R.G. Experimental Test of the Optical Bloch Equations for Solids // Physical Review Letters. 1983. V. 50. P. 12-69.
  37. Gilbert S.L., Swann W.C., Dennis T. Wavelength Standards for Optical Communications // Proc., SPIE Laser Frequency Stabilization, Standards, Measurement, and Applications Conference. Jan. 25-26. 2001. P. 184-191.
  38. Oates C.W., Curtis E.A., Hollberg L. Improved short-term stability of optical frequency standards: approaching 1 Hz in 1 s with the Ca standard at 657 nm // Optics Lettters. 2000. V. 25. Is. 21. P. 1603-1605.
  39. Rafac R.J., Young B.C., Beall J.A., Itano W.M., Wineland D.J., Bergquist J.C. Sub-dekahertz Ultraviolet Spectroscopy of 199Hg+ // Physical Review Letters. 2000. V. 85. P. 2462-2465.
  40. Barber Z., Tian M., Reibel R., Babbitt W. Optical pulse shaping using optical coherent transients // Optics Express. 2002. V. 10. P. 1145.
  41. Babbitt W., Neifeld M.A., Merkel K.D. Broadband analog to digital conversion using analog spectral recording // US patent №. 7471224 B2. 2008. URL: http: // ip.com/pat/US7471224.
  42. Ohlsson N., Mohan R.K., Kröll S. Quantum computer hardware based on rare-earth-ion-doped inorganic crystals // Optics Communications. 2002. V. 201. P. 71-77.
  43. Juarez A.A., Vilaseca R., Zhaoming Zhu, Gauthier D.J. Room-temperature spectral hole burning in an engineered inhomogeneously broadened resonance // Optics Letters. 2008. V. 33. Is. 20. P. 2374-2376.