R. E. Kosak1, A. V. Gevorkyan2
1, 2 Institute of Radio Engineering Systems and Control, Southern Federal University (Taganrog, Russia)
1 kosak@sfedu.ru, 2 avgevorkyan@sfedu.ru
Currently, a lot of phased array radiators based on the Vivaldi antenna are known. Some of them operate in a wide band or an ultra-wide band (UWB), but only a few can operate in UWB with wide-angle scanning capability. However, such radiators often have a relative dimension greater than the wavelength at the upper operating frequency, which complicates transportation, increases material consumption and leads to an increase in the cost of the phased array manufacturing process.
The objective of the article is to develop two electrodynamic designs of phased array radiators with matching inserts of different sizes and to study their characteristics both as part of infinite phased arrays and as part of antenna arrays with small element-counts.
Electrodynamic models of compact wide-angle scanning UWB cardioid radiators with matching inserts of varying sizes have been developed. Their characteristics have been studied as part of infinite phased arrays and antenna arrays with small element-counts on screens of varying sizes. An analysis of the obtained characteristics has been conducted. It has been determined that for the electrodynamic modeling of antenna arrays with small element-counts, it is recommended to use a cardioid radiator modification with 54 inserts in the aperture, and for radiators as part of infinite phased arrays, a modification with 22 inserts in the aperture is recommended.
The proposed modified designs of cardioid radiators with matching inserts can be used in radar, radio navigation, or radio communication systems.
Kosak R.E., Gevorkyan A.V. Influence of matching elements on the characteristics of cardioid radiators. Antennas. 2025. № 6. P. 57–71. DOI: https://doi.org/10.18127/j03209601-202506-07 (in Russian)
- Balanis C.A. Modern antenna handbook. 2nd Ed. John Wiley & Sons. 2011.
- Voskresenskij D.I., Gostyukhin V.L., Maksimov V.M., Ponomarev L.I. Ustrojstva SVCh i antenny. Izd. 2-e. M.: Radiotekhnika. 2006. (in Russian)
- Zyryanov Yu.T., Fedyunin P.A., Belousov O.A. i dr. Antenny: Ucheb. posobie dlya vuzov. Izd. 5-e, ster. Sankt-Peterburg: Lan'. 2022. (in Russian)
- Ovchinnikova E.V., Shumilov T.Yu., Kkhaung E.Kh. Antennaya reshetka iz sverkhshirokopolosnykh izluchatelej «babochka». Voprosy elektromekhaniki. Trudy VNIIEM. 2019. T. 172. № 5. S. 25–31. (in Russian)
- Radzievskij V.G., Trifonov P.A. Obrabotka sverkhshirokopolosnykh signalov i pomekh. M.: Radiotekhnika. 2009. (in Russian)
- Mokole E.L., Sabath F. Ultrawideband technologies and applications. IEEE Antennas and Propagation Magazine. 2018. V. 60. № 3. P. 8–9.
- Lazorenko O.F., Chernogor L.F. Sverkhshirokopolosnye signaly i fizicheskie protsessy. Radiofizika i radioastronomiya. 2008. № 2. S. 166–194. (in Russian)
- Latha T., Ram G., Kumar G.A., Chakravarthy M. Review on ultra-wideband phased array antennas. IEEE Access. 2021. V. 9. P. 129742–129755.
- Grinev A.Yu., Bagno D.V., Sinani A.I., Mosejchuk G.F. Rasshirenie polosy rabochikh chastot mnogofunktsional'nykh fazirovannykh antennykh reshyotok. Sb. dokladov IV Vseross. konf. «Radiolokatsiya i radiosvyaz'». Moskva: Institut radiotekhniki i elektroniki im. V.A. Kotel'nikova RAN. 2010. S. 631–635. (in Russian)
- Ryazanov I.G. Analiz i sintez shirokopolosnoj planarnoj shchelevoj antenny s eksponentsial'nym izmeneniem shiriny shcheli dlya sistem shirokopolosnogo dostupa. Voprosy sovremennoj nauki i praktiki. 2013. № 2 (46). S. 297–306. (in Russian)
- Dong J., Wang Y., Meng F., Feng W. A research on airborne conformal array with high gain and low SLL. 2014 International Conference on Computational Intelligence and Communication Networks. Bhopal, India. 2014. P. 334–338.
- Parveen F., Wahid P. Detection of Blood Clots inside the brain using microwave imaging. 2022 3rd URSI Atlantic and Asia Pacific Radio Science Meeting (AT-AP-RASC). Gran Canaria, Spain. 2022. P. 1–4.
- Shao W., Ryan S.A. Two antipodal Vivaldi antennas and an antenna array for microwave early breast cancer detection. Microwave and Optical Technology Letters. 2013. V. 55. № 3. P. 670–674.
- Fagnoni N., et al. Design of the new wideband Vivaldi feed for the HERA radio-telescope Phase II. IEEE Transactions on Antennas and Propagation. 2021. V. 69. № 12. P. 8143–8157.
- Dixit A.S., Kumar S. A survey of performance enhancement techniques of antipodal Vivaldi antenna. IEEE Access. 2020. V. 8. P. 45774–45796.
- Naqvi A.H., Lim S. Review of recent phased arrays for millimeter-wave wireless communication. Sensors (Basel). 2018. V. 18. № 10. P. 1–31.
- Rotkhammel' K. Antenny: Per. s nem. SPb: Izd-vo «Boyanych». 1998. (in Russian)
- Eichenberger J., Yetisir E., Ghalichechian N. Antipodal UWB Vivaldi antenna with pseudoelement and notched flares for 2.5–57 GHz applications. 2018 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting. Boston, MA, USA. 2018. P. 270–1758.
- Kosak R.E., Gevorkyan A.V. Kompaktnyj sverkhshirokopolosnyj izluchatel' Vival'di kardioidnoj formy s pryamougol'nymi impedansnymi vstavkami. Izvestiya YuFU. Tekhnicheskie nauki. 2024. № 3. S. 276–284. (in Russian)

