350 rub
Journal Antennas №6 for 2025 г.
Article in number:
Control of Pancharatnam-Berry phase of backscattering from cylindrical metasurfaces
Type of article: scientific article
DOI: https://doi.org/10.18127/j03209601-202506-03
UDC: 621.371:538.574
Authors:

A. I. Semenikhin1, A. N. Savitskiy2
1, 2 Institute of Radioengineering Systems and Control, Southern Federal University (Taganrog, Russia)

2 savicky@sfedu.ru

Abstract:

The paper studies the peculiar properties of the control of Pancharatnam-Berry (PB) phase for backscattering from two models of cylindrical metasurfaces (CMS). Estimates for the effect of the anisotropy axes orientation and the curvature radius of these models on the polarization conversion of circularly polarized (CP) waves and the PB-phase have been obtained.

The first idealized anisotropic metal-magnetic impedance model of the CMS is specified by the boundary conditions PEC and PMC along the rotated anisotropy axes. The scattering matrix elements of this model (in the bases of linear and circular polarization) versus the rotation angle β of the anisotropy axes and the radius ka have been obtained explicitly.

It has been confirmed that the model implements anti-phase scattering of co-polarized TE and TM waves at any angle β and any radius ka. In the resonance region of ka, the rotation of β is accompanied by anomalies in the amplitudes and phases of CP waves near the angles of 45° and 135°. The anomalies of the linear law of the PB-phase ψPB = ±2β weaken starting from ka > 5. The scattering characteristics of the second full-wave model of the CMS from dumbbell-shaped meta-particles have been examined. The simulation results showed that for it the level of the cross CP-wave increases (in comparison with a similar flat MS).

For the second model, resonance anomalies at β = 45° and β = 135° and small deviations of the PB-phase from the linear law ψPB = = ±2β have been also observed.

Pages: 26-35
For citation

Semenikhin A.I., Savitskiy A.N. Control of Pancharatnam-Berry phase of backscattering from cylindrical metasurfaces. Antennas. 2025. № 6. P. 26–35. DOI: https://doi.org/10.18127/j03209601-202506-03 (in Russian)

References
  1. Chen H.T., Taylor A.J., Yu N. A review of metasurfaces: physics and applications. Reports on Progress in Physics. 2016. V. 79. № 7. P. 076401. DOI: 10.1088/0034-4885/79/7/07640.
  2. Li A., Singh S., Sievenpiper D. Metasurfaces and their applications. Nanophotonics. 2018. V. 7. № 6. P. 989–1011. DOI: 10.1515/nanoph-2017-0120.
  3. Zhuo W. et al. A review of high-efficiency Pancharatnam-Berry metasurfaces. Terahertz Science and Technology. 2020. V. 13. № 3. P. 73–89. DOI: 10.1051/tst/2020133073.
  4. Chen K. et al. Geometric phase coded metasurface: from polarization dependent directive electromagnetic wave scattering to diffusion-like scattering. Scientific reports. 2016. V. 6. № 1. P. 35968. DOI: 10.1038/srep35968.
  5. Wu X. et al. Ultra-broadband Pancharatnam-Berry phase metasurface for arbitrary rotation of linear polarization and beam splitter. Optics express. 2022. V. 30. № 9. P. 15158–15171. DOI: 10.1364/OE.456393.
  6. Du J. et al. Optical vortex array: generation and applications. Chinese Optics Letters. 2024. V. 22. № 2. P. 020011. DOI: 10.3788/ COL202422.020011.
  7. Li B.Q. et al. Electromagnetic scattering suppression based on multi-beam OAM metasurface. 2022 International Conference on Microwave and Millimeter Wave Technology (ICMMT). IEEE. 2022. P. 1–3. DOI: 10.1109/ICMMT55580.2022.10023076.
  8. Semenikhin A.I., Semenikhina D.V. Metapoverkhnosti Patcharatnama-Berri s generatsiej uglovogo orbital'nogo momenta i kombinirovannym fazovym kodirovaniem dlya shirokopolosnogo shirokougol'nogo snizheniya EPR. Zhurnal radioelektroniki. 2024. № 5. DOI: 10.30898/1684-1719.2024.5.9. (in Russian)
  9. Semenikhin A.I., Semenikhina D.V., Yukhanov Y.V. Digital Pancharatnam-Berry metasurfaces with 1-bit OAM-modules for broadband RCS reduction. 2023 International Conference on Electromagnetics in Advanced Applications (ICEAA). IEEE. 2023. P. 19–23. DOI: 10.1109/ICEAA57318.2023.10297857.
  10. Liu Q. et al. RCS reduction metasurface based on orbital angular momentum. Results in Physics. 2023. V. 53. P. 107008. DOI: 10.1016/ j.rinp.2023.107008.
  11. Semenikhin A.I., Semenikhina D.V. Tsilindricheskie anizotropnye metapoverkhnosti s bigradientnym spiral'nym kodirovaniem fazy Pancharatnam-Berri i anomal'nym rasseyaniem. Zhurnal radioelektroniki. 2022. № 10. DOI: 10.30898/1684-1719.2022.11.14
  12. Dugan J. et al. Field scattering analysis of cylindrical spatially dispersive metasurfaces. IEEE Antennas and Wireless Propagation Letters. 2023. V. 22. № 11. P. 2619–2623. DOI: 10.1109/LAWP.2023.3291868.
  13. Al-Nuaimi M.K.T., Huang G.L. 3D conformal metasurfaces for RCS reduction of 3D targets at microwave frequencies. 2023 International Conference on Microwave and Millimeter Wave Technology (ICMMT). IEEE. 2023. P. 1–3. DOI: 10.1109/ICMMT58241. 2023.10276719.
  14. Semenikhin A.I., Klimov A.V., Savitskij A.N. Anizotropnaya impedansnaya tsilindricheskaya metapoverkhnost' dlya samoadaptivnogo gasheniya rasseyannykh voln lyubykh polyarizatsij. Izvestiya YuFU. Tekhnicheskie nauki. 2023. № 6. DOI: 10.18522/2311-3103-2023-6-258-267. (in Russian)
Date of receipt: 22.09.2025
Approved after review: 14.10.2025
Accepted for publication: 10.11.2025