K. M. Zanin1
1 FSUE “Rostov-on-Don Scientific Research Institute of Radio Communications” FSPC (Rostov-on-Don, Russia)
1 konstantinzanin@rambler.ru
To form the required radiation pattern on the aperture of an antenna array, a corresponding amplitude-phase distribution of the electromagnetic field must be generated. The near field can be distorted due to deviations in the geometric parameters of the antenna. Geometric distortions in antenna arrays can arise from mechanical damage or manufacturing errors. Additionally, geometric distortions may occur during the deployment of antennas or during their operation. These distortions lead to the displacement and rotation of antenna elements, resulting in changes to the radiation pattern.
The goal of this article is to establish a relationship between the parameters of geometric distortions and changes in the radiation pattern for various configurations of antenna arrays.
The article presents a mathematical model of the antenna array aperture that accounts for geometric distortions. These distortions may include the displacement of antenna elements and their rotation relative to the surface. The developed mathematical model enables the calculation of the radiation pattern of an antenna array in the presence of aperture distortions and establishes a correlation between the parameters of geometric distortions and changes in the radiation pattern for various antenna array configurations.
The practical significance of this article is expressed in four key aspects:
1) the mathematical model allows estimating the antenna's radiation pattern (including the polarization radiation pattern) for known parameters of geometric distortions;
2) the mathematical model provides a basis for justifying the accuracy requirements for the mounting of antenna elements based on specified radiation pattern requirements;
3) the mathematical model reduces labor costs and accelerates the construction of a 3D model of the antenna. The 3D model is essential for performing electrodynamic calculations using computer-aided design software;
4) the mathematical model can be integrated into the synthesis algorithm for antenna arrays with complex surface.
Zanin K.M. Mathematical model of a radiating aperture of a conformal antenna array with geometric distortions. Antennas. 2025. № 5. P. 36–50. DOI: https://doi.org/10.18127/j03209601-202505-04 (in Russian)
- Vi U.N., Kaloshin V.A., Le D.T. Mnogoluchevye volnovodno-shchelevye antennye reshetki s bifokal'nymi diagrammo-obrazuyushchimi sistemami. Zhurnal radioelektroniki. 2020. № 3 [Elektronnyj zhurnal]. URL: http://jre.cplire.ru/jre/mar20/13/text.pdf. (in Russian)
- Shifrin Ya.S. Voprosy statisticheskoj teorii antenn. M.: Sov. radio. 1970. (in Russian)
- Rocca P. Analysis of the pattern tolerances in linear arrays with arbitrary amplitude errors. IEEE Antennas and Wireless Propagation Letters. 2013. V. 12. P. 639–642.
- Maslov O.N., Rakov A.S., Silkin A.A. Statisticheskie kharakteristiki polya reshetki aperturnykh sluchajnykh antenn. Radiotekhnika i elektronika. 2013. T. 58. № 11. S. 64–75. (in Russian)
- Krasil'nikova E.P., Maslov O.N., Rakov A.S. Modelirovanie statisticheskikh kharakteristik elektromagnitnogo polya aperturnoj sluchajnoj antenny. Infokommunikatsionnye tekhnologii. 2014. T. 12. № 2. S. 78–86. (in Russian)
- Zimina S.V. Vliyanie fluktuatsij vesovogo vektora na statisticheskie kharakteristiki adaptivnoj antennoj reshetki s nelinejnoj fluktuatsiej v tsepi obratnoj svyazi, nastraivaemoj po algoritmu LMS s kvadratichnym ogranicheniem. Fizika volnovykh protsessov i radiotekhnicheskie sistemy. 2014. T. 17. № 4. S. 26–32. (in Russian)
- Korn G., Korn T. Spravochnik po matematike (dlya nauchnykh rabotnikov i inzhenerov). M.: Nauka. 1977. (in Russian)

