350 rub
Journal Antennas №3 for 2025 г.
Article in number:
Analysis of the radio frequency effects of interaction of the Parker Solar Probe spacecraft's onboard antennas with ionosphere of Venus and use of electrically small antennas in space communications
Type of article: scientific article
DOI: https://doi.org/10.18127/j03209601-202503-05
UDC: 621.396.67:523.62-726:537.86
Authors:

A. V. Nikolaev1, E. I. Starovoitov2, A. V. Kolesnikov3, D. V. Fedosov4, R. A. Bekishev5
1 Mechanical Engineering Research Institute of the Russian Academy of Sciences (Moscow, Russia)
2 JSC Progress MRI (Moscow, Russia)
3–5 LLC «HF Communications» (Omsk, Russia)

1 alarmoren@yandex.ru, 2 evgstarovojtov@yandex.ru, 3 kolesnikov.radio@yandex.ru, 4 xferra@mail.ru

Abstract:

In 2021, NASA published data on radio frequency effects resulting from the interaction of the onboard antennas of the Parker spacecraft, obtained by observing the night side of Venus. Four pin antennas of the device protruding beyond its heat shield measured electric field fluctuations in two planes, and the fifth pin antenna determined the position of electrical fluctuations in three-dimensional space. Since these antennas are sensitive to changes in the electrical properties of the medium, depending on the concentration of electrons and ions, it was possible to identify several regions of the charged ionosphere of Venus.

The purpose of this work is to analyze the radio frequency effects resulting from the interaction of the onboard antennas of the Parker spacecraft with the electric and magnetic fields of Venus. Spectral-temporal visualization of the received audio signal has been used as a method for studying the radio frequency effects that occur when the antenna interacts with the ionospheric gas of Venus. Using this method, the amplitude, time, and frequency characteristics of the radio signal have been analyzed, allowing us to evaluate its spectral expansion and the appearance of harmonics, changes in the electron-ion conductivity of the medium, and draw conclusions about the possible causes of the effect. A table has been compiled in which the effects leading to these spectral features are described. It has been shown that the main causes of radio frequency effects in these areas are differences in the complex dielectric constant of the medium, linear and nonlinear scattering of radio signal energy in the antenna-feeder path, as well as the dynamics of the Parker spacecraft during a flyby of Venus and ions ejected at different speeds by engines during trajectory correction.

In the future, it is of great interest to supplement these studies with radio measurements in the decameter and hectometer ranges of radio wavelengths. To operate at these frequencies, it has been proposed to use resonant spiral electrically small antennas operating in a narrow frequency band. The influence of cosmic factors on the characteristics of these antennas is less than that of pin antennas. They can be used with small-sized digital transceiver equipment for receiving and processing geophysical signals, as well as for receiving and transmitting data from other spacecraft or to Earth.

The dependences of the wire length and diameter, the resonant frequency, and the mass of an electrically small spiral antenna on the number of turns in one layer have been given. The results obtained make it possible to better understand the interaction of antennas with space plasma for future space programs, as well as the processes in the ionosphere of Venus. The use of resonant spiral electrically small antennas in deep space communication lines has been proposed.

Pages: 46-59
For citation

Николаев А.В., Старовойтов Е.И., Колесников А.В., Федосов Д.В., Бекишев Р.А. Анализ радиочастотных эффектов взаимодействия бортовых антенн космического аппарата «Parker» с ионосферой Венеры и применение электрически малых антенн в космической связи // Антенны. 2025. № 3. С. 46–59. DOI: https://doi.org/10.18127/j03209601-202503-05

References
  1. NASA’s Parker Solar Probe discovers natural radio emission in Venus’ atmosphere – NASA.htm [Elektronnyj resurs]. URL: https://www.nasa.gov/ science-research/heliophysics/nasas-parker-solar-probe-discovers-natural-radio-emission-in-venus-atmosphere/ (data obrashcheniya: 19.02.2025).
  2. Bale S.D., Goetz K., Harvey P.R. et al. The FIELDS instrument suite for Solar Probe Plus. Space Science Reviews. 2016. № 204. P. 49–82. DOI: 10.1007/s11214-016-0244-5.
  3. Guo Y., Thompson P., Wirzburger J. Execution of Parker Solar Probe's unprecedented flight to the Sun and early results. Acta Astronautica. 2021. V. 179. P. 425–438. DOI: 10.1016/j.actaastro.2020.11.007.
  4. Nikolaev A.V., Starovojtov E.I., Krivolutskij A.A. i dr. Ob uchete zemnoj atmosfery pri proektirovanii kosmicheskikh radiolinij s pomoshch'yu modeli CHARM-IONS. Geliogeofizicheskie issledovaniya. 2023. № 40. S. 93–102. DOI: 10.5425/2304-7380_2023_40_93. (in Russian)
  5. Chizhevskij A.L. Kosmicheskij pul's zhizni: Zemlya v ob''yatiyakh solntsa. Geliotaraksiya. M.: Mysl'. 1995. (in Russian)
  6. Krivolutskij A.A. Razvitie idej vliyaniya kosmosa na atmosferu i ionosferu. Sb. materialov IV Mezhdunar. nauch.-praktich. konf., posvyashchennoj sokhraneniyu nauchnogo naslediya i razvitiyu idej A.L. Chizhevskogo «A.L. Chizhevskij. Vklad v nauku i kul'turu». Kaluga: IP Strel'tsov I.A. (Ejdos). 2024. S. 87–90. (in Russian)
  7. Krivolutskij A.A., Banin M.V., Cherepanova L.A. i dr. Opisanie global'noj chislennoj modeli CHARM-DE pri raschete profilej elektronnoj kontsentratsii v okolozemnom kosmicheskom prostranstve. Geliogeofizicheskie issledovaniya. 2023. № 37. S. 1–5. DOI: 10.5425/2304-7380_2023_37_1. (in Russian)
  8. Namgaladze A.A., Shapovalova Yu.A., Knyazeva M.A. Issledovanie vliyaniya smeshcheniya geomagnitnykh polyusov na termosferu i ionosferu Zemli: postanovka zadachi. Trudy Kol'skogo nauchnogo tsentra RAN. 2018. T. 9. № 5-4. S. 137–145. DOI: 10.25702/KSC.2307-5252.2018.9.5.137-145. (in Russian)
  9. Mareev E.A., Chugunov Yu.V. Antenny v plazme. Nizhnij Novgorod: IPF AN SSSR. 1991. (in Russian)
  10. Delamere P.A., Lynch K., Lessard M., Pfaff R. Alfvén wave generation and electron energization in the KiNET-X sounding rocket mission. Physics of Plasmas. 2024. V. 31. № 11. DOI: 10.1063/5.0228435.
  11. Slyusar' N.M. Effekt vtorichnoj modulyatsii radiolokatsionnykh signalov. Minsk: VA RB. 2005. (in Russian)
  12. Shcherbakov G.N., Antselevich M.A. Novye metody obnaruzheniya skrytykh ob''ektov. M.: El'f IPR. 2011. (in Russian)
  13. Tsedrik M.V., Podlesnyj A.V. Ispol'zovanie antenn begushchej volny dlya priema signalov naklonnogo zondirovaniya ionosfery. Sb. trudov XXVII Vseross. otkr. nauch. konf. «Rasprostranenie radiovoln». Kaliningrad. 2021. S. 368–372. (in Russian)
  14. Bocharov V.S., Generalov A.G., Gadzhiev E.V. Razrabotka pryamougol'noj mikropoloskovoj antenny metrovogo diapazona (150 MGts) dlya primeneniya na kosmicheskom apparate «Ionosfera». Voprosy elektromekhaniki. Trudy VNIIEM. 2013. T. 136. № 5. S. 15–18. (in Russian)
  15. Chu L.J. Physical limitations of omni-directional antennas. Journal of Applied Physics. 1948. V. 19. № 12. P. 1163–1175. DOI: 10.1063/1.1715038.
  16. Volakis J., Chen Ch.-Ch., Fujimoto K. Small antennas: Miniaturization techniques & applications. McGraw-Hill. 2010.
  17. Hansen R.C. Electrically small, superdirective, and superconducting antennas. John Wiley & Sons. 2006.
  18. Balanis C.A. Modern antenna handbook. John Wiley & Sons. 2008.
  19. Slyusar V. 60 let teorii elektricheski malykh antenn. Nekotorye itogi. Elektronika: nauka, tekhnologiya, biznes. 2006. № 7. S. 10–19. (in Russian)
  20. Wheeler H.A. Fundamental limitations of small antennas. Proc. of the IRE. 1947. V. 35. № 12. P. 1479–1488. DOI: 10.1109/JRPROC. 1947.226199.
  21. Ovsyannikov V.V. Elektricheski malye vibratornye, spiral'nye i petlevye antenny. Radiofizika i elektronika. 2017. T. 8 (22). № 1. S. 57–67. (in Russian)
  22. Korchagin Yu.A., Salomatov V.P., Chernov A.A. Radiosvyaz' v provodyashchikh sredakh. Novosibirsk: Nauka. Sib. otdelenie. 1990. (in Russian)
  23. Fedosov D.V., Nikolaev A.V., Kolesnikov A.V. i dr. Obzor sposobov organizatsii podzemnoj svyazi i perspektivy ispol'zovaniya diapazona srednikh voln v shakhtakh. Trudy NIIR. 2022. № 1. S. 19–36. DOI: 10.34832/NIIR.2022.8.1.003. (in Russian)
  24. Fedosov D.V., Kolesnikov A.V., Nikolaev A.V. Sushchestvuyushchie i perspektivnye antennye resheniya dlya svyazi v podzemnykh gornykh vyrabotkakh. Sb. materialov dokl. Mezhdunar. nauch.-praktich. konf. «Elektronnye sredstva i sistemy upravleniya». 2020. № 1-1. S. 121–124. (in Russian)
  25. Patent № 2758986 RF. Sposob izgotovleniya katushki induktivnosti. D.V. Fedosov, A.V. Kolesnikov, O.V. Shevelev, P.V. Dmitriev. Opubl. 08.11.2021. Byul. № 31. (in Russian)
  26. Patent na poleznuyu model' № 213264 RF. Robotizirovannyj stanok dlya izgotovleniya induktivnostej additivnym sposobom. O.V. Shevelev, D.V. Fedosov, A.V. Kolesnikov, P.V. Dmitriev, A.V. Nikolaev. Opubl. 02.09.2022. Byul. № 25. (in Russian)
  27. Nikolaev A.V., Fedosov D.V., Shevelev O.V. i dr. Additivnaya tekhnologiya izgotovleniya katushek induktivnosti dlya antenn perspektivnykh radiosistem. Problemy mashinostroeniya i avtomatizatsiya. 2022. № 1. S. 85–90. DOI: 10.52261/02346206 _2022_1_85. (in Russian)
  28. Kolesnikov A.V. Ekspluatatsionnye osobennosti malogabaritnykh antennykh ustrojstv SV diapazona v rudnikakh i shakhtakh. Trudy NIIR. 2021. № 4. S. 49–60. DOI: 10.34832/NIIR.2021.7.4.006. (in Russian)
  29. Kolesnikov A.V., Fedosov D.V., Nikolaev A.V. Modelirovanie rezonansnoj spiral'noj elektricheski maloj antenny. Zhurnal radioelektroniki [elektronnyj zhurnal]. 2022. № 8. DOI: 10.30898/1684-1719.2022.8.13. (in Russian)
  30. Kolesnikov A.V. Issledovanie i razrabotka effektivnykh elektricheski malykh antenn dlya kanalov svyazi diapazona srednikh voln v gornykh vyrabotkakh. Diss. … kand. tekhn. nauk. Omsk. 2023. (in Russian)
  31. Logunov A.A., Nikolaev A.V., Nushtaeva V.S., Starovojtov E.I. Metodika rascheta moshchnosti signala v ionosfernykh liniyakh radioperedachi. Telekommunikatsii i informatsionnye tekhnologii. 2024. T. 11. № 2. S. 103–107. (in Russian)
  32. Gavrik A.L., Pavel'ev A.G., Gavrik Yu.A. Obnaruzhenie ionosfernykh sloev v dnevnoj ionosfere Venery na vysotakh 80–120 km po rezul'tatam dvukhchastotnogo radioprosvechivaniya kosmicheskimi apparatami «Venera-15, -16». Solnechno-zemnaya fizika. 2008. T. 2. Vyp. 12. S. 203–205. (in Russian)
  33. Gavrik A.L., Kolomiets S.F., Ilyushin Ya.A. i dr. Radioprosvechivanie v missii Venera-D: kontseptsiya postroeniya radiochastotnykh sistem i usovershenstvovannye metodiki obrabotki rezul'tatov izmerenij. RENSIT. 2019. T. 11. № 1. S. 5–12. DOI: 10.17725/rensit.2019.11.005. (in Russian)
  34. Gavrik A.L. Neodnorodnosti ionosfery Venery po dannym radioprosvechivaniya. Sb. materialov Vseross. otkr. nauch. konf. «Sovremennye problemy distantsionnogo zondirovaniya, radiolokatsii, rasprostraneniya i difraktsii voln». Murom: Muromskij filial VGU im. A.G. i N.G. Stoletovykh. 2020. S. 129–133. (in Russian)
  35. Gavrik A.L. Pogreshnosti opredeleniya elektronnoj kontsentratsii pri reshenii obratnoj zadachi radioprosvechivaniya dnevnoj ionosfery Venery. Zhurnal radioelektroniki [elektronnyj zhurnal]. 2018. № 9. DOI: 10.30898/1684-1719.2018.9.2. (in Russian)
Date of receipt: 04.03.2025
Approved after review: 08.04.2025
Accepted for publication: 26.05.2025