
M. S. Vorona1, Yu. N. Kopalov2, А. G. Maslik3, A. Yu. Onufrey4
1–4 Military Space academy named after A.F. Mozhaisky (Saint-Petersburg, Russia)
1 vka@mil.ru
Against the background of significant achievements in SpaceX's deployment of the Starlink low-orbit multi-satellite communication system (LOMCS), the number of similar projects is increasing. They are developed both by private companies, for example, Amazon, and through government programs, for example, the Chinese LOMCS GuoWang. There are similar projects in the Russian Federation.
A significant increase in the number of LOMCS spacecraft complicates the task of ensuring their electromagnetic compatibility with the fixed satellite service (FSS) earth stations (ES). In [5], the authors proposed a method for assessing the electromagnetic compatibility of LOMCS user terminals with the FSS ES. At the same time, it is advisable to solve the opposite problem when the source of unintentional interference is not the FSS ES, but the LOMCS spacecraft.
To justify the requirements for FSS ES receivers, as well as the structure of the orbital constellation, the frequency ranges used and the types of signals of promising LOMCS, it is necessary to assess how the signal-to-noise ratio at the input of the FSS ES receiver changes. The corresponding method has been proposed in the article and examples of calculations performed for Starlink LOMCS have been given. It is also necessary to develop a method for assessing the electromagnetic compatibility of FSS ES with LOMCS.
The proposed method allows calculating the signal-to-noise ratio at the input of the receiving devices of the FSS ES in conditions of unintentional interference from the LOMCS spacecraft. Calculations have been made using the proposed method using Starlink LOMCS as an example. The proposed method also allows us to calculate the idea of the effect of LOMCS on the reception of FSS ES signals. The method can be used to form requirements for both the receiving devices of the FSS ES and the promising domestic LOMCS.
Vorona M.S., Kopalov Yu.N., Maslik А.G., Onufrey A.Yu. Method for evaluating electromagnetic compatibility of fixed satellite service earth stations with low-orbit multi-satellite communication systems. Antennas. 2024. № 6. P. 14–23. DOI: https://doi.org/ 10.18127/j03209601-202406-02 (in Russian)
- Hindin J.D., Keisner C.A., Lottenbach M.M., Counsel L. Application for authority to launch and operate a non-geostationary satellite orbit system in Ka-band frequencies. FCC Materials. 2019.
- Julienne M. China in the race to low Earth orbit: Perspectives on the future Internet constellation Guowang. Asie.Visions. 2023. № 136.
- RosKosmos [Elektronnyj resurs]. URL: http://www.roscosmos.ru/39080 (data obrashcheniya: 01.07.2024). (in Russian)
- «Byuro 1440» zapustila tri rossijskikh nizkoorbital'nykh sputnika svyazi [Elektronnyj resurs]. URL: http://habr.com/ru/ news/815603 (data obrashcheniya: 01.07.2024). (in Russian)
- Vorona M.S., Gusarov A.A., Kopalov Yu.N., Onufrej A.Yu. Metod otsenivaniya elektromagnitnoj sovmestimosti abonentskikh terminalov nizkoorbital'nykh sputnikovykh sistem peredachi dannykh s zemnymi stantsiyami fiksirovannoj sputnikovoj sluzhby. Elektromagnitnye volny i elektronnye sistemy. 2023. T. 28. № 6. S. 32–38. (in Russian)
- NORAD Two-line element set format [Elektronnyj resurs]. URL: http://celestrak.com/NORAD/documentation/tle-fmt.asp (data obrashcheniya: 01.07.2024).
- Chagina V.A., Grishko D.A., Majorova V.I. Raschet dvizheniya kosmicheskogo apparata po okolokrugovoj orbite po dannym TLE po uproshchennoj modeli SGP. Nauka i obrazovanie. 2016. № 1. S. 52–66. (in Russian)
- Visyul'kina Yu.S. Povyshenie tochnosti dannykh o polozhenii orbity iskusstvennogo kosmicheskogo ob''ekta s ispol'zovaniem modeli SGP4 i dannykh GPS. Sb. statej Mezhdunar. nauch.-praktich. konf. «Novye impul'sy razvitiya: voprosy nauchnykh issledovanij». Saratov: NOO «Tsifrovaya nauka». 2020. S. 54–57. (in Russian)
- Darenskaya L.V. Vektornoe reshenie obratnoj geodezicheskoj zadachi na bol'shie rasstoyaniya. Estestvennye i matematicheskie nauki v sovremennom mire. 2013. № 12. S. 220–224. (in Russian)
- Staritsin S.S., Abakumov A.N., Peredrij A.V., Pavlov A.V. Metodika otsenivaniya parametrov signalov s OFDM-modulyatsiej. Zhurnal radioelektroniki. 2020. № 6. S. 1–16. (in Russian)
- Rekomendatsiya MSE-R P.676-11. Zatukhanie v atmosfernykh gazakh [Elektronnyj resurs]. URL: https://www.itu.int/dms_pubrec/itu-r/rec/p/R-REC-P.676-11-201609-I!!PDF-R.pdf (data obrashcheniya: 01.07.2024). (in Russian)
- Rekomendatsiya MSE-R P.840-7. Oslablenie iz-za oblachnosti i tumana [Elektronnyj resurs]. URL: https://www.itu.int/ dms_pubrec/itu-r/rec/p/R-REC-P.840-7-201712-S!!PDF-R.pdf (data obrashcheniya: 01.07.2024). (in Russian)
- Rekomendatsiya MSE-R P.618-10. Dannye o rasprostranenii radiovoln i metody prognozirovaniya, neobkhodimye dlya proektirovaniya sistem svyazi Zemlya – kosmos [Elektronnyj resurs]. URL: https://www.itu.int/dms_pubrec/itu-r/rec/p/R-REC-P.618-10-200910-S!!PDF-R.pdf (data obrashcheniya: 01.07.2024). (in Russian)
- Fortushenko A.D. Osnovy tekhnicheskogo proektirovaniya sistem svyazi cherez ISZ. M.: Svyaz'. 1970. (in Russian)
- Pekhterev S.V., Makarenko S.I., Koval'skij A.A. Opisatel'naya model' sistemy sputnikovoj svyazi Starlink. Sistemy upravleniya, svyazi i bezopasnosti. 2022. № 4. S. 190–255. (in Russian)