A. M. Mezhuev1, V. S. Rad’ko2, A. V. Korennoj3, M. P. Belyaev4
1–4 VUNTS of the Air Force «VVA» (Voronezh, Russia)
1 multitenzor@mail.ru, 2 vllala@yandex.ru, 3 korennoj@mail.ru, 4 belyaev_mp@mail.ru
One of the promising directions for the development of functional additions to the global navigation satellite system (GNSS) is the deployment of local navigation systems (LNS) that provide location determination of mobile objects using pseudo-satellites. In such systems, navigation signals are transmitted from a network of reference ground stations that create a radio navigation field in a given local area, with the help of which it is possible to determine the location of the consumer in conditions when GNSS signals are not available. The noise immunity of the LNS is significantly higher, and the probability of the influence of imitation or distortion of the signal is reduced due to the increased signal level at the input of consumer navigation equipment. It is worth noting that introduction of new types of navigation signals with code separation is a promising direction of development in both LNS and GNSS. The characteristics of high availability and accuracy in determining the location of the consumer relate to signals with an autocorrelation function with a narrow main peak and a low level of side lobes. One of the types of such signals are meander BOC signals (binary offset carrier), as well as promising multiplexed TMBOC signals (time-multiplexed binary offset carrier). However, the use of meander or multiplexed signals in the LNS due to the increased level of out-of-band radiation (OBR) may affect the quality of operation of other electronic means (EM) operating in the general frequency range. Therefore, when developing LNS based on pseudo-satellites emitting BOC and TMBOC signals, it is necessary to take into account the requirements for electromagnetic compatibility (EMC) with other EM operating in the 1–2 GHz range.
The device for generating navigation signals with automatic adjustment of spectrum parameters has been developed. Modeling of signals with a reduced level of OBR has been performed. The experimental study has been conducted. Amplitude-frequency spectra of signals have been obtained, providing verification of the reliability of analytical calculations and simulation results.
Mezhuev A.M., Rad’ko V.S., Korennoj A.V., Belyaev M.P. Signal generation device with automatic adjustment of spectrum parameters for local navigation systems. Antennas. 2024. № 5. P. 17–25. DOI: https://doi.org/10.18127/j03209601-202405-02 (in Russian)
- Zaliznyuk A.N., Flegontov A.V., Volkov A.A. Perspektivy razvitiya nazemnoj navigatsii v Vooruzhennykh Silakh Rossijskoj Federatsii. Voennaya mysl'. 2022. № 9. S. 65–69. (in Russian)
- Rad'ko V.S., Nerovnyj V.V., Filonenko V.V., Tsitiridis V.V. Sposob formirovaniya mul'tipleksirovannykh signalov s trebuemoj formoj spektra v lokal'nykh navigatsionnykh sistemakh. Sb. mat. Vseross. nauch. konf. prepodavatelej, aspirantov i studentov. Khabarovsk. 2024. S. 358–365. (in Russian)
- GOST R 50016-92. Sovmestimost' tekhnicheskikh sredstv elektromagnitnaya. Trebovaniya k shirine polosy radiochastot i vnepolosnym izlucheniyam radioperedatchikov. Metody izmerenij i kontrolya. M.: IPK Izdatel'stvo standartov. 1996. (in Russian)
- Rad'ko V.S., Filonenko V.V., Mezhuev A.M., Mironov V.A. Sposob formirovaniya navigatsionnykh signalov s ponizhennym urovnem vnepolosnogo izlucheniya. Vestnik Voronezhskogo instituta FSIN Rossii. 2024. № 2. S. 26–34. (in Russian)
- Nerovnyj V.V., Zhuravlev A.V., Kiryushkin V.V., Filonenko V.V., Rad'ko V.S. Vybor polosy propuskaniya formiruyushchego fil'tra «pripodnyatyj kosinus» dlya navigatsionnykh meandrovykh signalov. Radiotekhnika. 2023. № 7. S. 42–49. (in Russian)
- Svidetel'stvo o gosudarstvennoj registratsii programmy EVM № 2024667430. Vybor optimal'nogo koeffitsienta skrugleniya fil'tra dlya formirovaniya navigatsionnogo signala v lokal'nykh navigatsionnykh sistemakh. Zareg. 24.07.2024. (in Russian)
- Global'naya navigatsionnaya sputnikovaya sistema GLONASS. Interfejsnyj kontrol'nyj dokument. Navigatsionnyj radiosignal v diapazonakh L1, L2. M. 2008.
- Yarlykov M.S. Meandrovye shumopodobnye signaly (BOC-signaly) i ikh raznovidnosti v sputnikovykh radionavigatsionnykh sistemakh: Monografiya. M.: Radiotekhnika. 2017. (in Russian)
- Svidetel'stvo o gosudarstvennoj registratsii programmy EVM № 2024663417. Formirovanie meandrovogo BOC-signala i mul'tipleksirovannogo TMBOC-signala s umen'shennym urovnem vnepolosnogo izlucheniya. Zareg. 06.06.2024. (in Russian)
- Nerovnyj V.V. Pomekhoustojchivost' mul'tisistemnoj apparatury potrebitelej GNSS: Monografiya. M.: Nauchnaya kniga. 2018. (in Russian)