
M. K. Sedankin1, S. G. Vesnin2, V. Yu. Leushin3, S. V. Agasieva4, I. O. Porokhov5, А. G. Gudkov6, A. A. Merkulov7, S. V. Chizhikov8
1–5 Peoples' Friendship University of Russia named after Patrice Lumumba (Moscow, Russia)
6, 8 BMSTU (Moscow, Russia)
7 RTU MIREA (Moscow, Russia)
8 Hyperion Ltd. (Moscow, Russia)
1 msedankin@yandex.ru, 2 vesnin47@gmail.com, 7 merkulov@mirea.ru
The key element of a medical microwave radiothermograph is the receiving antenna, which largely determines its efficiency and diagnostic capabilities. Currently produced medical radiothermographs are single-channel and single-frequency devices. To increase diagnostic efficiency, it is necessary to have information about internal temperatures at several points in the organ being examined simultaneously. The surface of the body can have a complex shape (head, joints, etc.), therefore, to ensure effective reception of the body's own radiation, a multi-channel conformal antenna array corresponding to the shape of the body is required.
The aim of the article is analysis of the current state of research in the field of creating antennas and antenna arrays for medical radiothermographs, formation of technical requirements for conformal antenna arrays from the point of view of increasing the efficiency of detecting thermal anomalies of biological tissues and development of recommendations for choosing the optimal design of a conformal antenna array.
The design features of antennas and conformal antenna arrays for microwave radiometry have been considered. The main characteristics of antennas have been presented, and scientific and technical barriers that need to be overcome for further development of this direction have been discussed. Technical requirements for conformal antenna arrays have been formulated, and the design of a conformal antenna array consisting of textile and rubber-like materials has been proposed. The results of the work can be used as a scientific and technical basis for the design of new generation medical microwave radiothermographs.
Sedankin M.K., Vesnin S.G., Leushin V.Yu., Agasieva S.V., Porokhov I.O., Gudkov А.G., Merkulov A.A., Chizhikov S.V. Experience in the development of applicator antennas for use in microwave radiothermometry. Antennas. 2024. № 5. P. 5–16. DOI: https://doi.org/ 10.18127/j03209601-202405-01 (in Russian)
- Groumpas E.I., Koutsoupidou M., Karanasiou I.S. Biomedical passive microwave imaging and sensing: current and future trends (Bioelectromagnetics). IEEE Antennas and Propagation Magazine. 2022. V. 64. № 6. P. 84–111.
- Sedankin M.K., et al. System of rational parameters of antennas for designing a multi-channel multi-frequency medical radiometer. International Conference on Actual Problems of Electron Devices Engineering (APEDE). Saratov, Russia. 2020. P. 154–159.
- Vesnin S.G. i dr. Pechatnaya antenna so vstroennym infrakrasnym datchikom temperatury dlya meditsinskogo mnogokanal'nogo mikrovolnovogo radiotermografa. Meditsinskaya tekhnika. 2020. № 4. S. 4–7. (in Russian)
- Lee J.W., et al. Experimental investigation of the mammary gland tumor phantom for multifrequency microwave radiothermometers. Medical & Biological Engineering & Computing. 2004. V. 42. № 5. P. 581–590.
- Sedelnikov Y.E., Potapova O.V., Sadykov A.R., Skachkov V.A. Focused antennas in contact radiothermometry applications. Journal of Radio Electronic. 2021. № 3. P. 1–26. (in Russian)
- Oikonomou A., Karanasiou I., Uzunoglu N. Phased-array near field radiometry for brain intracranial applications. Progress In Electromagnetics Research. 2010. V. 109. P. 345–360.
- Tofighi M.R., Pardeshi J.R. Interference enhanced biomedical antenna for combined heating and radiometry application. IEEE Antennas and Wireless Propagation Letters. 2017. V. 16. P. 1895–1898.
- Issac J.P., Arunachalam K. Enhancing sensing depth and measurement sensitivity of microwave tissue thermometry using near-field active array probe. IEEE Transactions on Microwave Theory and Techniques. 2024. V. 72. № 5. P. 3200–3209.
- Agasieva S.V. i dr. Konformnaya meditsinskaya antenna na osnove gibkoj podlozhki. Meditsinskaya tekhnika. 2022. № 6 (336). S. 1–4. (in Russian)
- Patent № 2673103 RF. Tekstil'naya antenna dlya mikrovolnovoj radiotermometrii. S.G. Vesnin, M.K. Sedankin, Kh.Sh. Takhir, S. Navnit. Opubl. 22.11.2018. Byul. № 33. (in Russian)
- Vesnin S.G. i dr. Postroenie gibkikh konformnykh antenn dlya izmereniya sobstvennogo izlucheniya golovnogo mozga. Nanotekhnologii: razrabotka, primenenie – XXI vek. 2022. T. 14. № 4. S. 5–18. (in Russian)
- Rodrigues D.B., et al. Microwave radiometry for noninvasive monitoring of brain temperature in Emerging electromagnetic technologies for brain diseases diagnostics, monitoring and therapy. Springer Int. Publishing. 2018. P. 87–127.
- Salvado R., et al. Textile materials for the design of wearable antennas: a survey. Sensors. 2012. № 12. P. 15841–15857.
- Locher I., et al. Design and characterization of purely textile patch antennas. IEEE Transactions on Advanced Packaging. 2006. V. 29. P. 777–788.
- Patent № 2005235482 US. Method for constructing antennas from textile fabrics and components. M.A. Deaett, W.H. Weedon III. Pub. 27.11.2005.
- Sedankin M.K., Chupina D.N., Nelin I.V., Skuratov V.A. Development of patch textile antenna for medical robots. 2018 International Conference on Actual Problems of Electron Devices Engineering. 2018. P. 413–420.
- Babar A.A., et al. Performance of high-permittivity ceramic-polymer composite as a substrate for UHF RFID tag antennas. International journal of antennas and propagation. V. 2012. Article ID 905409. P. 1–8.
- Vesnin S.G. i dr. Povyshenie pomekhozashchishchennosti pechatnykh antenn dlya mnogokanal'nogo mikrovolnovogo radiotermografa. Nanotekhnologii: razrabotka, primenenie – XXI vek. 2023. T. 15. № 4. S. 20–24. (in Russian)
- Vesnin S.G. i dr. Vliyanie geometricheskikh razmerov antenn-applikatorov dlya mikrovolnovoj radiotermometrii na rezul'taty izmereniya radioyarkostnoj temperatury. Meditsinskaya tekhnika. 2023. № 3 (339). S. 25–28. (in Russian)
- Peregonov S.A., Krivoruchko V.I., Orlov Yu.A. FAR dlya antenny-applikatora radiotermografa organov tela cheloveka. Elektronnaya tekhnika. Ser. 1. SVCh-tekhnika. 2023. Vyp. 2 (558). S. 6–22. (in Russian)
- Sedankin M.K. i dr. Vybor kanalov i chastotnykh diapazonov mnogokanal'nogo mnogochastotnogo meditsinskogo radiotermografa. Nanotekhnologii: razrabotka, primenenie – XXI vek. 2023. T. 15. № 4. S. 5–19. (in Russian)