350 rub
Journal Antennas №4 for 2024 г.
Article in number:
Electrodynamic modeling of a four-channel antenna with an operating frequency band of octave
Type of article: scientific article
DOI: 10.18127/j03209601-202404-07
UDC: 621.396
Authors:

A. I. Starikovsky1, A. A. Zadernovsky2, Yu. I. Savvateev3, S. U. Uvaysov4, V. V. Chernoverskaya5
1–5 MIREA – Russian Technological University (Moscow, Russia)

1 starikovski@mirea.ru, 2 zadernovsky@mirea.ru, 4 uvajsov@mirea.ru, 5 v_chernoverskaya@mail.ru

Abstract:

The actual problem of electrodynamic modeling of a four-channel antenna with an octave operating frequency range has been considered. The results of numerical electrodynamic modeling of a four-channel antenna have been presented. The considered antenna with an octave operating frequency range is a rectangular curtain comprising four independent non-equidistant channels. Numerical electrodynamic modeling of a four-channel antenna has been carried out in the ANSYS HFSS software package, with the convergence parameter DeltaS = 0.01. As a result of the simulation, the frequency characteristics of each channel have been obtained: VSWR, gain, reflection coefficient, directional pattern.

The antenna provides a scanning angle as part of an ultra-wideband digital antenna array of at least ±30° in azimuth and from 0° to 60° in elevation. The gain of the antenna channels in the operating frequency range is not lower than 6 dB. According to the simulation results, the VSWR of each channel of the antenna in the operating frequency range does not exceed 2.55.

To minimize the influence of mutual coupling of channels on the antenna characteristics, the distance from the phase centers of the curtain emitters to other elements of the ultra-wideband digital antenna array should be at least a wavelength in free space at the lower frequency of the operating frequency range.

It has been shown that the considered four-channel antenna provides an octave operating frequency band and can be used as part of an ultra-wideband digital antenna array for direction finding of radiation sources.

Pages: 67-81
For citation

Starikovsky A.I., Zadernovsky A.A., Savvateev Yu.I., Uvaysov S.U., Chernoverskaya V.V. Electrodynamic modeling of a four-channel antenna with an operating frequency band of octave. Antennas. 2024. № 4. P. 67–81. DOI: https://doi.org/10.18127/j03209601-202404-07 (in Russian)

References
  1. Dobychina E.M. Cifrovye antennye reshetki radioelektronnykh bortovykh sistem. Diss. … dokt. tekhn. nauk. M. 2019. (in Russian)
  2. Klimov K., Gezha D., Firsov-Shibaev D. Prakticheskoe primenenie elektrodinamicheskogo modelirovaniya. Saarbryukken: Lambert Academic Publishing. 2012.
  3. Suchkov A.V., Klimov K.N. Linejnaya antennaya reshetka s rasshirennym rabochim sektorom v uglomestnoj ploskosti. Antenny. 2013. № 8. S. 18–29. (in Russian)
  4. Caj A.B., Godin A.S., Klimov K.N. Issledovanie zadachi umen'sheniya gabaritnykh razmerov antenny Vival'di kak elementa ploskoj antennoj reshetki. Antenny. 2017. № 3. S. 37–43. (in Russian)
  5. Patent № 2766132 RF. Polotno sverkhshirokopolosnoj volnovodnoj priemnoj antennoj reshetki linejnoj polyarizacii. G.G. Makarushkin, K.N. Klimov. Opubl. 08.02.2022. Byul. № 4. (in Russian)
  6. Macayan M.S., Perfil'ev V.V., Klimov K.N. Postroenie sverkhshirokopolosnoj cifrovoj antennoj reshetki. Elektronika i mikroelektronika SVCh. 2019. T. 1. S. 539–542. (in Russian)
  7. Patent № 2765899 RF. Sverkhshirokopolosnyj volnovodnyj izluchatel' linejnoj polyarizacii. G.G. Makarushkin, K.N. Klimov. Opubl. 04.02.2022. Byul. № 4. (in Russian)
  8. Makarushkin G.G., Klimov K.N. Elektrodinamicheskoe modelirovanie priemnoj antenny linejnoj polyarizacii s rabochej polosoj chastot oktava. Antenny. 2021. № 6. S. 43–54. DOI: 10.18127/j03209601-202106-05. (in Russian)
  9. Makarushkin G.G., Klimov K.N. Elektrodinamicheskoe modelirovanie priemnoj antenny linejnoj polyarizacii s rabochej polosoj chastot oktava. Radiotekhnika. 2021. T. 85. № 3. S. 117–127. DOI: 10.18127/j00338486-202103-12. (in Russian)
  10. Klimov K.N. Elektrodinamicheskoe modelirovanie volnovodnoj priemnoj antenny s rabochej polosoj chastot oktava. Vestnik vozdushno-kosmicheskoj oborony. 2021. № 1 (29). S. 61–68. (in Russian)
  11. Patent na poleznuyu model' № 170118 RF. Izluchatel' Godina. A.S. Godin, K.N. Klimov. Opubl. 14.04.2017. (in Russian)
  12. Patent na poleznuyu model' № 169311 RF. Izluchatel' Klimova. K.N. Klimov, A.S. Godin. Opubl. 15.03.2017. (in Russian)
  13. Godin A.S., Macayan M.S., Gezha D.S., Klimov K.N. Primenenie principa elektrodinamicheskogo podobiya i special'nykh materialov dlya umen'sheniya gabaritov izluchatelya. Naukoemkie tekhnologii. 2016. T. 17. № 4. S. 3–13. (in Russian)
  14. Klimov K.N., Epaneshnikova I.K., Belevtsev A.M., et al. Synthesis of structures of electric small-sized radiators using impedance matching materials for millimeter waves. Proceedings of SPIE – The International Society for Optical Engineering. Warsaw, 2017. P. 104390A. DOI: 10.1117/12.2299952.
  15. Drize A.D., Klimov K.N. Elektrodinamicheskoe modelirovanie selektorov polyarizacij s pomoshch'yu programmnogo kompleksa CST Studio Suite. Antenny. 2020. № 6. S. 41–47. DOI: 10.18127/j03209601-202006-05. (in Russian)
  16. Godin A.S., Caj A.B., Klimov K.N. Chislennoe elektrodinamicheskoe issledovanie vneshnego kuba Gyujgensa. Radiotekhnika i elektronika. 2015. T. 60. № 5. S. 468. DOI 10.7868/S0033849415050046. (in Russian)
  17. Godin A.S., Caj A.B., Klimov K.N. Chislennoe elektrodinamicheskoe issledovanie diagramm napravlennostej vneshnej zadachi dlya elementa Gyujgensa vneshnego kuba Gyujgensa. Radiotekhnika i elektronika. 2015. T. 60. № 7. S. 695. DOI: 10.7868/S0033849415070086. (in Russian)
  18. Godin A.S., Caj A.B., Klimov K.N. Chislennoe elektrodinamicheskoe issledovanie vnutrennej zadachi dlya elementa Gyujgensa vnutrennego kuba Gyujgensa. Radiotekhnika i elektronika. 2015. T. 60. № 4. S. 352. DOI: 10.7868/S0033849415020059. (in Russian)
  19. Godin A.S., Macayan M.S., Klimov K.N. Chislennoe elektrodinamicheskoe issledovanie vneshnego kuba Sestroreckogo. Radiotekhnika i elektronika. 2016. T. 61. № 5. S. 401. DOI: 10.7868/S0033849416050065. (in Russian)
  20. Denisov V.P., Sharygin G.S., Krutikov M.V. i dr. Prostranstvenno-vremennye iskazheniya santimetrovykh radiosignalov na nazemnykh trassakh rasprostraneniya i ikh vliyanie na tochnost' passivnykh sistem mestoopredeleniya. Tomsk: Tomskij gosudarstvennyj universitet sistem upravleniya i radioelektroniki. 2014. (in Russian)
  21. Tislenko V.I., Savin A.A. Dinamicheskij algoritm razresheniya neodnoznachnosti v fazovom uglomere kosmicheskoj sistemy opredeleniya mestopolozheniya nazemnogo istochnika radioizlucheniya. Doklady TUSURa. 2006. № 6. S. 96–102. (in Russian)
  22. ANSYS HFSS [Elektronnyj resurs]. URL: https://www.cadfem-cis.ru/products/ansys/electronics/hfss/ (data obrashcheniya: 05.05.2024).
  23. ANSYS HFSS [Elektronnyj resurs]. URL: https://www.ansys.com/products/electronics/ansys-hfss (data obrashcheniya: 07.05.2024).
Date of receipt: 31.05.2024
Approved after review: 20.06.2024
Accepted for publication: 24.07.2024