V. G. Koshkid’ko1, V. A. Fleyteng2, A. N. Dementiev3, D. L. Myasnikov4
1, 2 Southern Federal University (Taganrog, Russia)
3, 4 MIREA – Russian Technological University (Moscow, Russia)
1 kvg59@mail.ru
In monopulse radar, along with mirror and lens antennas, slotted waveguide antenna arrays (SWA) are often used, especially in those cases when it is required to have a flat non-protruding shape and compact dimensions. The design and manufacturing of such antennas have specialties associated with the use of non-standard feeding systems of radiating waveguides, which are considered in this paper as the example of creation of a flat SWA intended for use in a monopulse search and tracking radar.
The aim of the article is calculating and modeling a slotted waveguide antenna array based on a hollow metal waveguide with a given level of side lobes and main lobe width of the radiation pattern.
The developed SWA contains a radiating and feeding part. The radiating part, with 24 linear resonant waveguide-slot antennas with longitudinal slots on the wide wall of the waveguide, is divided into two subarrays to realize the monopulse mode. Each subarray is fed from the feeding waveguide through slanted slots cut in the wide wall of the waveguide. The antenna design calculation has been carried out in the MathCad, and the modeling has been performed in CAD Ansys HFSS. The energy method has been used to calculate the coordinates of the longitudinal slots on the wide wall of the radiating waveguide as well as the inclined slots on the wide wall of the feeding one. The calculated radiation patterns of the developed antenna array in the E- and H-planes in sum and difference modes have been shown.
The paper outlines the methodology for designing a monopulse antenna system using a SWA. The system forms a beam directed perpendicular to the antenna plane. During the design process, the slotted waveguide antenna array based on a hollow waveguide has been modeled and researched to obtain the required characteristics specified in the technical requirements. The proposed approach can be applied to practical antenna design for monopulse radars.
Koshkid’ko V.G., Fleyteng V.A., Dementiev A.N., Myasnikov D.L. Planar slotted waveguide antenna array for monopulse radar. Antennas. 2024. № 4. P. 41–49. DOI: https://doi.org/10.18127/j03209601-202404-05 (in Russian)
- Leonov A.I., Fomichev K.I. Monoimpul'snaya radiolokatsiya. M.: Radio i svyaz'. 1984. (in Russian)
- Voskresenskij D.I. i dr. Ustrojstva SVCh i antenny. Proektirovanie antennykh reshetok: Ucheb. posobie dlya vuzov. Pod red. D.I. Voskresenskogo. Izd. 4-e. M.: Radiotekhnika. 2012. (in Russian)
- Josefsson L., Rengarajan S. Slotted waveguide array antennas: Theory, analysis and design. Scitech Publishing. 2018. DOI: 10.1049/ SBEW517E.
- Balanis C.A. Antenna theory: Analysis and design. Ed. 4th. Hoboken, NJ, USA: Wiley. 2016.
- Coetzee J.C., Joubert J., McNamara D.A. Off-center-frequency analysis of a complete planar slotted-waveguide array consisting of subarrays. IEEE Transactions on Antennas and Propagation. 2000. V. 48. № 11. P. 1746–1755. DOI: 10.1109/8.900233.
- Semenikhin A.I., Koshkid'ko V.G., Klimov A.V. Proektirovanie zerkal'nykh antenn s pomoshch'yu paketa Mathcad: Ucheb. posobie. Taganrog: Izd-vo YuFU. 2016. URL: https://hub.lib.sfedu.ru/repository /material/800914249/ (in Russian)
- Wang W.-X., Wang J. Analysis and design of 8 mm large waveguide longitudinal slot array. Proceedings of 2012 International Workshop on Microwave and Millimeter Wave Circuits and System Technology. 2012. DOI: 10.1109/MMWCST.2012.6238118.
- Richardson P.N., Lee H.Y. Design and analysis of slotted waveguide arrays. Microwave Journal. 1988. № 6. P. 109–125. DOI: 10.1002/ 1098–2760(20001220)27:63.3.CO;2-J.
- Elliott R.S. On the design of traveling-wave-fed longitudinal shunt slot arrays. IEEE Transactions on Antennas and Propagation. 1979. V. 27. № 5. P. 717–720. DOI: 10.1109/TAP.1979.1142166.
- Koshkid'ko V.G., Migalin M.M. Design and investigation of a linear equidistant slotted waveguide antenna. 2017 Radiation and Scattering of Electromagnetic Waves (RSEMW). Divnomorskoe, Russia, 26–30 June 2017. Piscataway: IEEE. 2017. P. 291–294. DOI: 10.1109/ RSEMW.2017.8103653.
- Koshkid'ko V.G., Migalin M.M. Primenenie makrosov yazyka VBScript pri modelirovanii volnovodno-shchelevykh antenn v SAPR Ansys HFSS. Izvestiya vuzov Rossii. Radioelektronika. 2020. T. 23. № 1. S. 6–17. DOI: 10.32603/1993-8985-2020-23-1-6-17. (in Russian)
- Koshkid'ko V.G., Migalin M.M. Issledovanie chastotnoj zavisimosti diagrammy napravlennosti rezonansnoj volnovodno-shchelevoj antennoj reshetki, sostoyashchej iz podreshetok, v SAPR Ansys HFSS. Izvestiya vuzov Rossii. Radioelektronika. 2020. T. 23. № 4. DOI: 10.32603/1993-8985-2020-23-4-15-24. (in Russian)
- Koshkid'ko V.G., Migalin M.M. Razrabotka linejnoj ekvidistantnoj volnovodno-shchelevoj antennoj reshetki i analiz ee napravlennykh svojstv. Antenny. 2018. № 2. C. 15–20. DOI: 10.32603/1993-8985-2020-23-4-15-24. (in Russian)
- Li T., Meng H., Dou W., Xia G., Zhu H. Design of low sidelobe slotted waveguide monopulse antenna array. Proceedings of 2014 3rd Asia-Pacific Conference on Antennas and Propagation. Harbin, China. 2014. P. 212–214. DOI: 10.1109/APCAP.2014.6992455.
- Rengarajan S.R., Zawadzki M.S., Hodges R.E. Waveguide-slot array antenna designs for low-average-sidelobe specifications. IEEE Antennas and Propagation Magazine. 2010. V. 52. № 6. P. 89–98. DOI: 10.1109/MAP.2010.5723227.
- Stevenson A.F. Theory of slots in rectangular waveguides. Journal of Applied Physics. 1948. V. 19. № 1. P. 24–38. DOI: 10.1063/1.1697868.
- Oliner A. The impedance properties of narrow radiating slots in the broad face of rectangular waveguide: Part I – Theory. IRE Transactions on Antennas and Propagation. 1957. V. 5. № 1. P. 4–11. DOI: 10.1109/TAP.1957.1144488.
- Oliner A. The impedance properties of narrow radiating slots in the broad face of rectangular waveguide: Part II – Comparison with measurement. IRE Transactions on Antennas and Propagation. 1957. V. 5. № 1. P. 12–20. DOI: 10.1109/TAP.1957.1144487.