Journal Antennas №3 for 2024 г.
Article in number:
Two-stage deployment kinematics of petal type radio astronomical antenna
Type of article: scientific article
DOI: https://doi.org/10.18127/j03209601-202403-07
UDC: 621.396.677, 520.27
Authors:

V. I. Bujakas1, M. D. Glotov2
1, 2 Р.N. Lebedev Physical Institute of the Russian Academy of Sciences (Moscow, Russia)

1 bujakas@yandex.ru, 2 maxglotov1998@yandex.ru

Abstract:

A two-stage deployment of the petal type antenna for space radio telescope has been proposed. At the first stage, preliminary unstressed low-precision deployment of the antenna has been carried out. At the second stage, high-precision fixation of the final state of open reflector has been realized. To fix the final state of the open antenna self-setting locks have been proposed. Results of computer and physical simulation of the new deployment system have been presented.

Pages: 58-64
For citation

Bujakas V.I., Glotov M.D. Two-stage deployment kinematics of petal type radio astronomical antenna. Antennas. 2024. № 3. P. 58–64. DOI: https://doi.org/10.18127/j03209601-202403-07 (in Russian)

References
  1. Bing W., et al. Space deployable mechanics: A review of structures and smart driving. Materials & Design. 2024. V. 237. DOI: 10.1016/ j.matdes.2023.112557.
  2. Semler D., Tulintseff A., Sorrell R., et al. Design, integration and deployment of the TerreStar 18-meter reflector. Proceedings of the 28th AIAA international communications satellite systems conference. 2010.
  3. Kazantsev Z.A. i dr. Parabolicheskij transformiruemyj reflektor dlya platformy CubeSat. Kosmicheskie apparaty i tekhnologii. 2020. T. 4. № 2. S. 85–95. DOI: 10.26732/j.st.2020.2.03. (in Russian)
  4. Baoyan D., et al. Large deployable satellite antennas. Springer Singapore. 2020. DOI: https://doi.org/10.1007/978-981-15-6033-0.
  5. Kardashev N.S. i dr. «Radioastron» – teleskop razmerom 300000 km: osnovnye parametry i pervye rezul'taty nablyudenij. Astronomicheskij zhurnal. 2013. T. 90. № 3. S. 179–222. (in Russian)
  6. Tao An, et al. Space very long baseline interferometry in China. Advances in Space Research 2020. V. 65. № 2. P. 850–855. DOI: doi.org/10.1016/j.asr.2019.03.
  7. He Huang, et al. Design and deploying study of a new petal-type deployable solid surface antenna. Acta Astronautica. 2018. V. 148. P. 99–110.
  8. Dornier, FIRST Technology study. Multisurface control mechanism for a deployable antenna. Final report. RP-FA-D003. 1987.
  9. Aleksandrov Yu.A. i dr. Radioastron (proekt «Spektr R). Osnovnye parametry i ispytaniya. Vestnik FGUP «NPO im. S.A. Lavochkina». 2011. № 3. S. 11–18. (in Russian)
  10. Kovalev Yu.A. i dr. Proekt «Radioastron». Izmerenie i analiz osnovnykh parametrov kosmicheskogo teleskopa v polete v 2011–2013 gg. Kosmicheskie issledovaniya. 2014. T. 52. № 5. S. 430–439. (in Russian)
  11. Buyakas V.I. Novaya kontseptsiya tochnogo lepestkovogo zerkala dlya kosmicheskoj radioastronomii. Kratkie soobshcheniya po fizike FIAN. 2021. № 3. S. 22–28. DOI: 10.3103/S1068335621030039. (in Russian)
  12. Buyakas V.I., Glotov M.D. Fizicheskoe modelirovanie sistemy raskrytiya novogo lepestkovogo zerkala dlya kosmicheskoj radioastronomii. Kratkie soobshcheniya po fizike FIAN. 2021. № 9. S. 3–9. DOI: 10.3103/S1068335621090025. (in Russian)
  13. Belyaev N.M. Soprotivlenie materialov. M.: Nauka. 1965. (in Russian)
  14. Bujakas V.I. Isostatic adjustable structure for new petal space reflector deployment. International Journal of Solids and Structures. 2022. V. 238. № 1. P. 111383. DOI: doi.org/10.1016/j.ijsolstr.2021.111383.
  15. Yandeks.Disk. 3D model' lepestkovogo zerkala [Elektronnyj resurs]. URL: https://disk.yandex.ru/d/aKhLi_aC4EnXog (data obrashcheniya: 04.04.2024).
Date of receipt: 15.04.2024
Approved after review: 30.04.2024
Accepted for publication: 22.05.2024
Download