350 rub
Journal Antennas №2 for 2024 г.
Article in number:
Energy loss in practical waveguide channel designs
Type of article: scientific article
DOI: https://doi.org/10.18127/j03209601-202402-08
UDC: 621.372.81
Authors:

R. O. But1, A. A. Larin2, M. M. Lipina3, N. V. Samburov4
1–4 “Typhoon” JSC (Kaluga, Russia)

1 madara_40_rus@mail.ru, 2 larintema@ya.ru, 3 marie121288@yandex.ru, 4 samburov.n.v@yandex.ru

Abstract:

The presence of attenuation of electromagnetic waves in feeder paths leads to a decrease in the efficiency of radio engineering systems, as well as an increase in thermal noise, which reduces the sensitivity of the receiving part of the system. In addition to this, the thermal mode of the path deteriorates, which may be the cause of a decrease in its electrical strength, as well as overheating.

For hollow rectangular waveguides, the loss value is determined by the following design characteristics: the internal dimensions of the cross section and the so-called microwave quality of the material in which the ultra-high frequency currents flow. For metallic waveguides microwave quality is characterized, first of all, by intrinsic conductivity and roughness of the inner surface.

It should be emphasized that a necessary condition for a full-fledged study of the problem of loss reduction in waveguide devices is the possibility of practical substantiation of the results, specifically – the possibility of conducting measurements of losses in the layout of waveguide devices. However, in many works this issue is not given due attention, and any results of estimation of electrical parameters of conductive layers are not given. The purpose of this work is to study the magnitude of losses in practical designs of waveguide devices. The study is carried out on device layouts, conductive layers of which are made (formed) from common materials of high conductivity with different surface states. This paper presents the results of the study of effective conductivity values of practical waveguide channel designs. The research methodology showed acceptable accuracy (3...5%), and the research results are consistent with previously known data, as well as supplement them.

The research results clearly demonstrate that such a widespread concept as the thickness (effective thickness) of the skin layer, obtained by calculation, is of practical importance only for ideal homogeneous materials. In other cases, the depth of occurrence and distribution of microwave current density is difficult to predict, depending on the coating thickness, roughness of the coating and the substrate, as well as on the ratio of their effective conductivities.

Most publications on loss reduction in waveguide devices address the issues of surface microroughness. At the same time, in practical designs, attention should be paid to the condition of the surface layer. And it is peculiar not only for galvanic coatings, but also for surfaces obtained by cold deformation.

Galvanic silver plating of the inner surface of brass waveguides used to increase electrical conductivity often does not give positive results due to the significant roughness and porosity of the silver coating. While the roughness can be improved (e.g. by mechanical means), reducing the porosity of the deposited metal represents a significant technological challenge.

Pages: 75-84
For citation

But R.O., Larin A.A., Lipina M.M., Samburov N.V. Energy loss in practical waveguide channel designs. Antennas. 2024. № 2. P. 75–84. DOI: https://doi.org/10.18127/j03209601-202402-08 (in Russian)

References
  1. Sovremennye problemy antenno-volnovodnoj tekhniki: Sb. st. Pod red. A.A. Pistol'korsa. M.: Nauka. 1967. (in Russian)
  2. Krajnov V.V. Effektivnost' dornovaniya v mednykh (volnovodnykh) detalyakh. Trudy NGTU im. R.E. Alekseeva. 2014. № 5 (107). S. 225–229. (in Russian)
  3. Zverintseva L.V., Sysoev A.S., Sysoev S.K., Yung P.A. Otdelka vnutrennikh poverkhnostej volnovodov dlya kosmicheskikh apparatov. Vestnik Sibirskogo gosudarstvennogo aerokosmicheskogo universiteta im. akademika M.F. Reshetneva. 2006. № 4 (11). S. 56–59. (in Russian)
  4. Zverintsev V.V., Zverintseva L.V., Sysoev S.K., Churakov D.V. Ustrojstvo dlya abrazivno-ekstruzionnoj obrabotki (AEO) korotkikh volnovodov santimetrovogo diapazona. Reshetnevskie chteniya. 2014. T. 1. S. 398–400. (in Russian)
  5. Menukhova Yu.N., Trifanov I.V. Povyshenie kachestva poverkhnosti kanalov volnovodov. Aktual'nye problemy aviatsii i kosmonavtiki. 2015. T. 2. № 11. S. 101–102. (in Russian)
  6. Oborina L.I., Menukhova Yu.N., Ismailov B.N., Trifanov I.V. Anodno-abrazivnoe polirovanie kanalov volnovodov. Reshetnevskie chteniya. 2015. T. 1. S. 473–474. (in Russian)
  7. Kopaneva E.N. Analiz sposobov polucheniya provodyashchikh pokrytij vnutrennej poverkhnosti volnovodov malogo secheniya. Radiopromyshlennost'. 2016. № 2. S. 70–74. (in Russian)
  8. Bul'bik Ya.I., Eresko T.T., Tregubov S.I., Khomenko I.I. Sravnitel'nyj analiz sposobov formirovaniya provodyashchego pokrytiya vnutrennej poverkhnosti volnovoda malogo secheniya. Vestnik Sibirskogo gosudarstvennogo aerokosmicheskogo universiteta im. akademika M.F. Reshetneva. 2005. № 3. S. 201–205. (in Russian)
  9. Sterekhova D.I., Trifanov I.V. Metody obespecheniya sherokhovatosti na poverkhnosti kanalov volnovodov KVCh-diapazona. Aktual'nye problemy aviatsii i kosmonavtiki. 2010. T. 1. № 6. S. 293. (in Russian)
  10. Sterekhova D.I., Oborina L.I., Trifanov I.V. Vakuumnoe osazhdenie tonkikh plenok v kanalakh volnovodov. Aktual'nye problemy aviatsii i kosmonavtiki. 2011. T. 1. № 7. S. 289. (in Russian)
  11. Khomenko I.I., Ravodina D.V., Mikheev A.E. i dr. Metod izgotovleniya volnovoda s tokoprovodyashchim vakuumnym pokrytiem. Vestnik Sibirskogo gosudarstvennogo aerokosmicheskogo universiteta im. akademika M.F. Reshetneva. 2015. T. 16. № 3. S. 690–695. (in Russian)
  12. Tokmakov D.I. Vozmozhnosti primeneniya additivnykh tekhnologij dlya proizvodstva elementov SVCh-traktov. Sb. materialov XV Molo­dezhnaya nauch.-tekhnich. konf. «Radiolokatsiya i svyaz' – perspektivnye tekhnologii». Moskva. 2017. M.: OOO «Izdatel'stvo «Mir nauki». 2017. S. 102–106. (in Russian)
  13. Os'kin A.V., Khomenko I.I., Girn A.V. Nanesenie tokoprovodyashchego pokrytiya na vnutrennyuyu poverkhnost' volnovoda malogo secheniya. Reshetnevskie chteniya. 2014. T. 1. S. 27–29. (in Russian)
  14. Polishchuk N.P., Zimina S.V. Segodnya i zavtra gal'vanokhimicheskoj tekhnologii v proizvodstve radioizmeritel'noj apparatury. Antenny. 2004. № 7. S. 52–54. (in Russian)
  15. Baryshnikov I.V., Datskovskij V.A., Upolovnev A.V. Vliyanie sherokhovatoj poverkhnosti volnovedushchej sistemy na VCh-poteri. Radiotekhnika i elektronika. 1988. T. 33. № 10. S. 2029–2034. (in Russian)
  16. Biryukov V.V., Grachev V.A. Vliyanie neideal'nosti (sherokhovatosti) poverkhnosti stenok volnovoda na ego kharakteristiki. Antenny. 2018. № 1. S. 48–52. (in Russian)
  17. Biryukov V.V., Kozhevnikova T.V., Lobin S.G. Opredelenie effektivnoj udel'noj provodimosti sherokhovatoj provodyashchej poverkhnosti. Antenny. 2021. № 2. S. 30–34. (in Russian)
  18. Bajchurin A.S. Raschet, konstruirovanie i izgotovlenie volnovodnykh ustrojstv i ob''emnykh rezonatorov. M.: GEI. 1963. (in Russian)
  19. Vorob'ev E.A. Raschet proizvodstvennykh dopuskov ustrojstv SVCh. L.: Sudostroenie. 1980. (in Russian)
  20. Kharvej A.F. Tekhnika sverkhvysokikh chastot: V 2-kh tomakh. Per. s angl. V.I. Sushkevicha. T. 1. M.: Sov. radio. 1965. (in Russian)
  21. Metrikin A.A. Antenny i volnovody RRL. M.: Svyaz'. 1977. (in Russian)
  22. Fel'dshtejn A.L., Yavich L.R., Smirnov V.P. Spravochnik po elementam volnovodnoj tekhniki. M.: Svyaz'. 1967. (in Russian)
  23. Starikov V.D. Metody izmerenij na SVCh s primeneniem izmeritel'nykh linij. M.: Sov. radio. 1972. (in Russian)
  24. Vernik S.M., Kushnir F.M., Rudnitskij V.B. Povyshenie tochnosti izmerenij v tekhnike svyazi. M.: Radio i svyaz'. 1981. (in Russian)
  25. Khibel' M. Osnovy vektornogo analiza tsepej: Per. s angl. S.M. Smol'skogo pod red. D.M. Sazonova i U. Filipp. M.: Izdatel'skij dom MEI. 2018. (in Russian)
  26. Bushminskij I.P. Izgotovlenie elementov konstruktsii SVCh. Volnovody i volnovodnye ustrojstva: Ucheb. posobie. M.: Vysshaya shkola. 1974. (in Russian)
  27. Spravochnik po volnovodam: Per. s angl. pod red. Ya.N. Fel'da. M.: Sov. radio. 1952. (in Russian)
  28. Loginov Yu.N. Med' i deformiruemye mednye splavy: Ucheb. posobie. Izd. 2-e, ster. Ekaterinburg: GOU VPO UGTU-UPI. 2006. (in Russian)
Date of receipt: 05.03.2024
Approved after review: 20.03.2024
Accepted for publication: 26.03.2024