350 rub
Journal Antennas №2 for 2024 г.
Article in number:
Methodology for selecting the method of mirror antenna protection in SHF-EHF bands from meteorological precipitations
Type of article: scientific article
DOI: https://doi.org/10.18127/j03209601-202402-04
UDC: 621.396.67, 532.517, 551.506
Authors:

A. M. Shaposhnikova1
1 FSUE “Rostov-on-Don Scientific Research Institute of Radio Communications” FSPC (Rostov-on-Don, Russia)

1 annagevorckian@yandex.ru

Abstract:

Exhaustion of SHF band capabilities in the organization of space communication channels necessitated the transition to the lower part of the EHF band (up to 95 GHz). At the transition stage space channel antennas function in the dual frequency range. This leads to the fact that the methods of protection of ground sector mirror antennas from the impact of meteorological factors should take into account the peculiarities of propagation of millimeter-wave radio waves in the layer of precipitation that can occur in the antenna reflector. For a scientifically justified choice of the method of protection there should be a methodology that allows taking into account both electrodynamic peculiarities of propagation of radio waves of SHF and EHF ranges, and meteorological peculiarities of the antenna location. The latter determines the relevance of the proposed research topic.

The objective of the article is ensuring minimum power losses and fulfillment of the rain unavailability index of the mirror antenna of the SHF-EHF wavelength bands of space communication channels by means of a reasonable choice of the method of protection against the impact of meteorological precipitation characteristic of the antenna location.

It has been shown that the functioning of mirror antennas of satellite ground stations in the dual frequency range of SHF-EHF makes it obligatory to take into account the peculiarities of propagation of millimeter-wave range waves in water formations when choosing methods of protection from the effects of meteorological precipitation. The most important of these features is the increase in energy losses of millimeter-wave radio waves in the layer of water formations, the thickness of which becomes comparable to the wavelength. In addition, the methods of antenna protection should also take into account the peculiarities of digital communication lines, in particular, the fulfillment of an additional requirement (rain readiness index), assuming the restoration of the operating state of the reflector within a time of up to 10 s. The above features allowed us to formulate a criterion for a scientifically justified choice of the method of protection of the antenna of dual frequency range. The developed methodology for selecting the method of protection of the mirror antenna of the dual wavelength range is based on the theory of meteorological electromagnetism. This allows not only modeling the radio wave energy losses in the layer of precipitation taking into account strict electrodynamic models, but also assigning the parameters of the layer of water formations (thickness, type of precipitation) taking into account the climatic features of the location of the mirror antenna. Thus, the developed method provides the following algorithm for selecting the method of protection. By geographic coordinates the climatic region of antenna location is determined. For abnormal climatic regions (temperature from ‑60° to +50°, wind force up to 70 m/s, snow load up to 250 kg/m3) the application of radio transparent shelter (radome) is an alternative protection method. For other climatic regions the choice of the method of protection of the mirror antenna implies three steps: 1) estimation of energy losses in the precipitation layer on the antenna reflector at refusal of protection methods (maximum possible losses); 2) calculation of the complex criterion; 3) selection from the proposed table of the method that most fully satisfies the criterion and is the most effective for the climatic region of antenna placement.

The proposed methodology allows on a scientific basis to choose the method of protection of mirror antennas of the dual frequency SHF-EHF range taking into account the meteorological features of the climatic region of its location.

Pages: 36-45
For citation

Shaposhnikova A.M. Methodology for selecting the method of mirror antenna protection in SHF-EHF bands from meteorological precipitations. Antennas. 2024. № 2. P. 36–45. DOI: https://doi.org/10.18127/j03209601-202402-04 (in Russian)

References
  1. Kalinin A.V., Egorov M.N., Moiseev S.P. i dr. Razrabotka vysokochuvstvitel'nykh priemnikov dlya issledovaniya kharakteristik antenn nazemnykh kompleksov kosmicheskoj svyazi v verkhnej chasti SVCh-diapazona. Raketno-kosmicheskoe priborostroenie i informatsionnye sistemy. 2019. T. 6. Vyp. 3. S. 23–32. (in Russian)
  2. Ovchinnikova E.V., Sokov M.A., Kondrat'eva S.G. i dr. Mnogodiapazonnye antenny. Voprosy elektromekhaniki. Trudy VNIIEM. 2021. T. 180. № 1. S. 33–39. (in Russian)
  3. Rappaport T.S., Xing Yu., MacCartney G.R., et al. Overview of millimeter wave communications for fifth-generation (5G) wireless networks – with a focus on propagation models. IEEE Transactions on Antennas and Propagation. 2017. V. 65. № 3. P. 6213–6230.
  4. Zagorin G.K., Zrazhevskij A.Yu., Kon'kov E.V. i dr. Faktory, vliyayushchie na rasprostranenie MM voln v prizemnom sloe atmosfery. Zhurnal radioelektroniki. 2001. № 7 [Elektronnyj resurs] / URL: http://jre.cplire.ru/jre/aug01/9/text.html (data obrashcheniya: 17.10.2023). (in Russian)
  5. Kir'yanov O.E., Mikhajlov G.D., Tosenko V.M. Otsenka vliyaniya aerozol'nykh osadkov na rabotosposobnost' RLS. Izvestiya vuzov. Radiofizika. 2000. T. 43. № 8. S. 703–708. (in Russian)
  6. Daoud N., Christodoulou C., Murrell D., et al. Rain attenuation analysis at 84 GHz. Proc. of IEEE International Symposium «On Antennas and Propagation & USNC/URSI National Radio Science Meeting». San-Diego, California. 2017. P. 1629–1630. (in Russian)
  7. Kharadly M.M.Z., Ross R. Effect of wet antenna attenuation on propagation data statistics. IEEE Transactions on Antennas and Propagation. 2001. V. 49. № 8. P. 1183–1191.
  8. Kurri M., Huuskonen A. Measurement of the transmission loss of the radome at different rain intensities. Journal of Atmospheric and Oceanic Technology. 2008. V. 25. № 9. P. 1590–1599.
  9. Patent № 9680230 USA. Antenna reflector hydrophobic coating and method for applying same. J. Santoru, E.C. Chen, C.C. Comeaux, T. Wu. Publ. 29.06.2015.
  10. Notaroš B.M. Meteorological electromagnetics. IEEE Antennas & Propagation Magazine. April 2021. P. 14–27.
  11. Patent № 2574170 RF. Mnogodiapazonnaya zerkal'naya antenna. P.Yu. Derkachev, A.A. Kosogor, Yu.I. Tikhov. Byul. № 4. Opubl. 10.02.2016. (in Russian)
  12. Zvezdina M.Yu., Shaposhnikova A.M., Shokova Yu.A. Vliyanie klimaticheskikh faktorov na poteri energii elektromagnitnoj volny millimetrovogo diapazona pri prokhozhdenii cherez sloj osadkov na reflektore zerkal'noj antenny. Radiotekhnika. 2021. № 7. S. 98–107. (in Russian)
  13. Jacobson M.D., Hogg D.C., Snider J.B. Wet reflector in millimeter-wave radiometry – Experiment and theory. IEEE Transactions on Geoscience and Remote Sensing. 1986. V. 24. № 5. P. 784–791.
  14. Ain M.F., Hassan S.I.S., Marzuki A., et al. Measurement of wet offset parabolic antenna at Ka-band with different elevation angles. ELEKTROPIKA: International Journal of Electrical, Electronic Engineering and Technology. 2012. V. 2. P. 47–56.
  15. Salazar-Cerreño J.L., Chandrasekar V., Trabal J.M., et al. A drop size distribution (DSD)-based model for evaluating the performance of wet radomes for dual-polarized radars. Journal of Atmospheric and Oceanic Technology. 2014. V. 31. № 11. C. 2409–2430.
  16. Mancini A., Salazar J.L., Lebrón R.M., et al. A novel instrument for real-time measurement of attenuation of weather radar radome including its outer surface. Part II: Applications. Journal of atmospheric and oceanic technology. 2018. V. 35. № 5. P. 975–991.
  17. Zvezdina M.Yu., Shaposhnikova A.M., Shokova Yu.A., Fedorov D.S. Osobennosti postroeniya modeli zerkal'noj antenny s uchetom vliyaniya meteorologicheskikh faktorov. Zhurnal radioelektroniki [elektronnyj zhurnal]. 2023. №6. DOI: https://doi.org/10/30898/1684-1719.2023.6.9. (in Russian)
  18. Sukharevskij O.I., Nechitajlo S.V., Vojtovich O.A., Khlopov G.I. Kharakteristiki izlucheniya odnozerkal'nykh antenn, chastichno pokrytykh sloem vody. Izvestiya vuzov. Radioelektronika. 2015. T. 58. № 2. S. 17–25. (in Russian)
  19. Patent № 2679004 USA. Snow detector and heater system for microwave antennas. E. Dyke, R.Y. Hoffman. Publ. 18.05.1954.
  20. Zhirov V.A., Zajtsev S.G., Orlov A.E. Effektivnost' ispol'zovaniya chastotno-energeticheskogo resursa v perspektivnykh vysokoskorostnykh sputnikovykh sistemakh svyazi. Elektrosvyaz'. 2019. № 1. S. 42–51. (in Russian)
  21. Dokhov M.P. Raschet vremeni ispareniya dispersnykh chastits. Fundamental'nye nauki. 2006. № 10. S. 65–66. (in Russian)
  22. Gurtovnik I.G., Sokolov V.I., Trofimov N.N., Shalgunov S.I. Radioprozrachnye ukrytiya iz stekloplastika. M.: Mir. 2003. (in Russian)
  23. Prikhod'ko I.N., Tokovenko V.A., Zvantsev V.S. Radioprozrachnye ukrytiya dlya statsionarnykh ustrojstv. Elektrosvyaz'. 2022. № 12. S. 36–45. (in Russian)
  24. Berdyshev V.P., Berdyshev R.V., Kordyukov R.Yu. i dr. Puti modernizatsii radioprozrachnykh ukrytij antennykh sistem radiotekhniches­kikh sredstv. Nauchnyj vestnik oboronno-promyshlennogo kompleksa Rossii. 2013. № 1. S. 54–60. (in Russian)
  25. Zvezdina M.Yu., Shaposhnikova A.M., Shokova Yu.A. Uchet vliyaniya ustanovki zerkal'noj antenny millimetrovogo diapazona dlin voln na korable na ee radiotekhnicheskie kharakteristiki. Sb. trudov XXIX Mezhdunar. nauchno-tekhnich. konf. «Radiolokatsiya, radionavigatsiya, svyaz'». 2023. Voronezh: Izd. dom VGU. 2023. T. 4. S. 317–328. (in Russian)
  26. OOO «Ajs Fri Sistems». Professional'nye sistemy antiobledeneniya: ofitsial'nyj sajt [Elektronnyj resurs]. URL: http://ifsystems.ru (data obrashcheniya: 01.10.2023). (in Russian)
  27. Antennas-Dish Cover-Snow-Ice: ofitsial'nyj sajt [Elektronnyj resurs]. URL: https://satellitedish.com/antennas-dish-cover-snow-ice/ (data obrashcheniya: 14.10.2023).
  28. Rodič P., Kapun B., Panjan M., et al. Easy and fast fabrication of self-cleaning and anti-icing perfluoroalkyl silane film on aluminium. Coatings. 2020 [Elektronnyj resurs]. URL: http://www.mdpi.com/journal/coatings10030234 (data obrashcheniya: 24.04.2023).
  29. Patent № 7342551 USA. Antenna systems for reliable satellite television reception in moisture conditions. L.D. King. Publ. 11.03.2008.
  30. GOST 16350-80. Klimat SSSR. Rajonirovanie i statisticheskie parametry klimaticheskikh faktorov dlya tekhnicheskikh tselej. M.: Izd-vo standartov. 1980. (in Russian)
  31. Kurganov A.M. Tablitsy parametrov predel'noj intensivnosti dozhdya dlya opredeleniya raskhodov v sistemakh vodootvedeniya. M.: Strojizdat. 1984. (in Russian)
  32. SP 20.13330.2016. Nagruzki i vozdejstviya. Aktualizirovannaya redaktsiya SNiP 2.01.07-85 (s izmeneniyami № 1, 2). (in Russian)
  33. ODM 218.5.001-2008. Metodicheskie rekomendatsii po zashchite i ochistke avtomobil'nykh dorog ot snega. Utv. rasporyazheniem Rosavtodora ot 01.02.2008 g. № 44-r. (in Russian)
  34. Dinamika mass snega i l'da. L.: Gidrometeoizdat. 1985. (in Russian)
Date of receipt: 23.01.2024
Approved after review: 01.02.2024
Accepted for publication: 26.03.2024