350 rub
Journal Antennas №6 for 2023 г.
Article in number:
Non-contact method for measuring distance to a flat surface using a combined multipole reflectometer
Type of article: scientific article
DOI: https://doi.org/10.18127/j03209601-202306-04
UDC: 621.391.82
Authors:

B. M. Kats1, A. A. L’vov2, P. A. L’vov3, V. P. Meshchanov4, K. A. Sayapin5
1–5 Nika-Microwave, Ltd. (Saratov, Russia)

1 brs19520@yandex.ru, 2 alvova@mail.ru, 3 peter.lvov@gmail.com, 4 nika373@bk.ru, 5 sayapin.k.a@mail.ru

Abstract:

When solving many technical problems, it is necessary to measure the distance to a certain surface when the device being measured cannot contact the surface under study, for example, due to its high temperature. For the same reason, or due to the opacity of the medium, it is not always possible to use the most highly accurate measurement method based on laser technology. The purpose of this work is to develop a non-contact method for measuring the distance to a flat surface, based on the use of a microwave combined multipole reflectometer. The paper describes methods for calibrating a combined multipole reflectometer, measuring the distance to the probed surface with its help and clarifying the frequency of the probe signal, which together make it possible to create a relatively inexpensive and high-precision distance meter capable of measuring the coordinates of the surface under study with an ac-curacy of 0.01 mm and operating in conditions under which the object under study is exposed to high temperatures, for example, in the steel industry. The simulation of the meter's operation confirmed the theoretical conclusions.

Pages: 35-45
For citation

Kats B.M., L’vov A.A., L’vov P.A., Meshchanov V.P., Sayapin K.A. Non-contact method for measuring distance to a flat surface using a combined multipole reflectometer. Antennas. 2023. № 6. P. 35–45. DOI: https://doi.org/10.18127/j03209601-202306-04 (in Russian)

References
  1. Nikolaenko A.Yu., L'vov A.A., L'vov P.A., Glukhova O.M. Razrabotka apparatnogo i programmnogo obespecheniya beskontaktnogo izmeritelya linejnykh peremeshchenij i vibratsij na osnove mnogopolyusnogo reflektometra. Vestnik Astrakhanskogo gosudarstvennogo tekhnicheskogo universiteta. Seriya: Upravlenie, vychislitel'naya tekhnika i informatika. 2019. № 4. S. 81–94. DOI: https://doi.org/10.24143/ 2072-9502-2019-4-81-94. (in Russian)
  2. Engen G.F., Hoer C.A. Application of an arbitrary six-port junction to power measurement problems. IEEE Transactions on Instrumentation and Measurement. 1972. V. 21. P. 470–474. DOI: 10.1109/TIM.1972.4314069.
  3. Hanson E.R.B., Riblet G.P. An ideal six-port network consisting of a matched reciprocal lossless five-port and a perfect directional coupler. IEEE Transactions on Microwave Theory and Techniques. 1983. V. 31. P. 284–288. DOI: 10.1109/TMTT.1983.1131477.
  4. Kabanov D.A., Nikulin S.M., Petrov V.V., Salov A.N. Development of automatic microwave circuit analyzers with 12-pole reflectometers. Measurement Techniques. 1985. V. 31. № 10. P. 875–878.
  5. Ghannouchi F.M., Mohammadi A. The six-port technique with microwave and wireless applications. Boston, London: Artech House. 2009.
  6. Li S., Vosisio R.G. Calibration of multiport reflectometers by means of four open short circuits. IEEE Transactions on Microwave Theory and Techniques. 1982. V. 30. P. 1085–1090. DOI: 10.1109/TMTT.1982.1131200.
  7. Griffin E.J. Six-port reflectometers and network analysers. IEE Vacation School Lecture Notes on Microwave Measurement. London Inst. Elec. Eng. 1983. P. 11/1–11/22.
  8. Xiao F., Ghannouchi F.M., Yakabe T. Application of a six-port wave-correlator for a very low velocity measurement using the Doppler effect. IEEE Transactions on Instrumentation and Measurement. 2003. V. 52. № 2. P. 546–554. DOI: 10.1109/TIM.2003.810039.
  9. Yakabe T., Xiao F., Iwamoto K., Ghannouchi F.M., Fujii K., Yabe H. Six-port based wave-correlator with application to beam direction finding. IEEE Transactions on Instrumentation and Measurement. 2001. V. 50. № 2. P. 377–380. DOI: 10.1109/19.918146.
  10. L'vov P.A. Primenenie mnogopolyusnykh reflektometrov spetsial'nogo vida dlya resheniya ryada prikladnykh zadach. Vestnik Saratovskogo gosudarstvennogo tekhnicheskogo universiteta. 2010. № 2 (45). S. 181–193. (in Russian)
  11. L'vov A.A. Automatic parameter gauge for microwave loads using a multi-port system. Measurement Techniques. 1996. V. 39. № 2. P. 124–128.
  12. L'vov A.A., Geranin R.V., Semezhev N., L'vov P.A. Statistical approach to measurements with microwave multi-port reflectometer and optimization of its construction. Proc. of 14th Conf. on Microwave Techniques. 2015. Pardubice, Czech Republic. P. 179–183.
  13. Semezhev N., L’vov A.A., Askarova A.Kh., Ivzhenko S.P., Vagarina N.S., Umnova E.G. Mathematical modeling and calibration pro-cedure of combined multiport correlator. Proc. of the Int. Conf. on Information Technologies «Recent Research in Control Engineering and Decision Making». Part of the Studies in Systems, Decision and Control book series. Springer, Cham. 2019. V. 199. P. 705–719.
  14. L'vov A.A., Semenov K.V. A method of calibrating an automatic multiprobe measurement line. Measurement Techniques. 1999. V. 42. № 4. P. 357–365.
  15. Stelzer A., Diskus C.G., Lübke K., Thim H.W. A microwave position sensor with submillimeter accuracy. IEEE Transactions on Microwave Theory and Techniques. 1999. V. 47. № 12. P. 2621–2624. DOI: 10.1109/22.809015.
  16. Hiebler M. China goes stainless. Metals and Mining. 2007. № 1. P. 30–31.
  17. L'vov A.A. L'vov P.A. A combined multi-port reflectometer for precise distance measuring. Proc. of the Conf. on Precision Electromagnetic Measurements. Rio-de-Janeiro, Brazil. 2014. P. 146–147. DOI:10.1109/CPEM.2014.6898301.
  18. Samarskij A.A., Mikhajlov A.P. Matematicheskoe modelirovanie: Idei. Metody. Primery. M.: Fizmatlit. 2005.
  19. L'vov A.A., Meshchanov V.P., Svetlov M.S., Nikolaenko A.Yu. Optimal'noe otsenivanie parametrov SVCh-tsepej s pomoshch'yu avtoma­ticheskikh analizatorov tsepej. Algoritmy obrabotki nablyudaemykh dannykh. Radiotekhnika. 2018. № 8. S. 147–154. DOI: 10.18127/ j00338486-20-201808-28. (in Russian)
  20. L'vov A.A., Meshchanov V.P., Semezhev N. Kombinirovannyj mnogopolyusnyj korrelyator i metod ego kalibrovki v sistemakh programmno-konfiguriruemoj radiosvyazi. Radiotekhnika. 2018. № 9. S. 69–73. DOI: 10.18127/j00338486-201809-14. (in Russian)
Date of receipt: 23.10.2023
Approved after review: 10.11.2023
Accepted for publication: 21.11.2023