S. N. Boyko1, O. V. Koryshev2, I. M. Trukhachev3
1–3 JSC “SRI SDE” (Moscow, Russia)
1 boyko_sn@orkkniikp.ru, 2 koryshev_ov@orkkniikp.ru, 3 trukhachev_im@orkkniikp.ru
Linearly polarized antennas with omnidirectional radiation patterns are widely used in VHF radio communications, in particular for exchanging signals between objects on the earth and water surfaces. In moving objects quarter-wave vibrator antennas are the most widely used ones. However, classic vibrator antennas have a relatively large vertical dimension, which can make it difficult for carriers of such equipment to move through restricted areas (in tunnels, under bridges or in wooded areas). An alternative to vibrators can be short-circuited ring microstrip antennas with the TM01 mode, which generates an axially symmetric field and, therefore, maintains linear polarization of the radiation with a toroidal shape of the radiation pattern. Short-circuited ring microstrip antennas can be folded for decrease the transverse dimensions. It will allow their radial sizes to be significantly decreased with a slight increase in the vertical sizes. This approach requires the development of a methodology for calculating the matching and radiation pattern of the folded short-circuited ring microstrip antennas.
The purpose of the article is to offer and test a methodology for calculating the matching and radiation pattern of the folded short-circuited ring microstrip antenna with an axisymmetric field.
The equivalent scheme and methodology for calculating the matching and radiation pattern of the folded short-circuited ring microstrip antenna with an axisymmetric field have been given. Calculation of matching with the supply feeder using the proposed methodology ensures a relative error less than 2% for the resonant frequencies, determined by the voltage standing wave ratio (VSWR) minimum. The dimensions of the quadruple folded short-circuited ring microstrip antenna are: diameter – 0.096λ, height – 0.026λ, where λ is the operating wavelength.
The proposed methodology for calculating can be successfully applied for designing low-profile VHF antennas with the omnidirectional radiation pattern.
Boyko S.N., Koryshev O.V., Trukhachev I.M. Calculation of a folded short-circuited microstrip antenna with a toroidal shape of the radiation pattern. Antennas. 2023. № 6. P. 21–34. DOI: https://doi.org/10.18127/j03209601-202306-03 (in Russian)
- Neganov V.A., Tabakov D.P., Yarovoj G.P. Sovremennaya teoriya i prakticheskie primeneniya antenn. Pod red. V.A. Neganova. M.: Radiotekhnika. 2009. (in Russian)
- Kocherzhevskij G.N., Erokhin G.A., Kozyrev N.D. Antenno-fidernye ustrojstva. M.: Radio i svyaz'. 1989. (in Russian)
- Fradin A.Z. Antenno-fidernye ustrojstva. M.: Svyaz'. 1977. (in Russian)
- Vojtovich N.I., Ershov A.V., Sokolov A.N. UKV vibratornye antenny: Ucheb. posobie. Chelyabinsk: Izd-vo YuUrGU. 2002. (in Russian)
- Ovsyannikov V.V. Vibratornye antenny s reaktivnymi nagruzkami. M.: Radio i svyaz'. 1985. (in Russian)
- Volakis J. Antenna engineering handbook. Ed. 4th. New York: Mcgraw-Hill. 2007. (in Russian)
- Rotkhammel' K. Antenny: Per. s nem. Izd. 11-e, ispr. T. 1. M.: DMK Press. 2019. (in Russian)
- Andrenko A., Ida I., Kikuzuki T. Dual-band patch antenna with monopole-like radiation patterns for BAN communications. 7th European Conference on Antennas and Propagation. Convened Sessions. 2013. P. 1922–1926.
- Panchenko B.A., Nefedov E.I. Mikropoloskovye antenny. M.: Radio i svyaz'. 1986. (in Russian)
- Bankov S.E., Davydov A.G., Papilov K.B. Malogabaritnye pechatnye antenny krugovoj polyarizatsii. Zhurnal radioelektroniki. 2010. № 8. (in Russian)
- Podilchak S.K., Murdoch A.P., Antar Y.M.M. Compact, microstrip-based folded-shorted patches. IEEE Antennas and Propagation Magazine. 2017. V. 59. № 2. P. 88–95.
- Markov G.T., Chaplin A.F. Vozbuzhdenie elektromagnitnykh voln. M.-L.: Energiya. 1967. (in Russian)
- Wolf I., Knoppik N. Rectangular and circular microstrip disk capacitors and resonators. IEEE Transactions on Microwave Theory and Techniques. 1974. V. 22. № 10. P. 857–864.
- Lin Y., Shafai L. Characteristics of concentrically shorted circular patch microstrip antennas. IEE Proceedings. 1990. V. 137. Pt. H. № 1. P. 18–24.
- González V.P., Segovia D.V., Rajo E.I., Vázquez J.R., Martín C.P. Analysis of short circuited ring patch operated at TM01 mode. Revista Facultad de Ingeniería – Universidad de Tarapacá. 2005. V. 13. № 2. P. 21–30.
- González V.P., Segovia D.V., Rajo E.I., Vázquez J.R., Martín C.P. Approximate analysis of short circuited ring patch antenna working at TM01 mode. IEEE Transactions on Antennas and Propagation. 2006. V. 54. № 6. P. 1875–1879.
- Liu Zh.-X., Zhu L., Liu N.-W. A compact omnidirectional patch antenna with ultrawideband harmonic suppression. IEEE Transactions on Antennas and Propagation. 2020. V. 68. № 11. P. 7640–7645.
- Gradshtejn I.S., Ryzhik I.M. Tablitsy integralov, summ, ryadov i proizvedenij. M.: Fizmatgiz. 1963. (in Russian)
- Bojko S.N., Zevakin E.A., Koryshev O.V., Trukhachev I.M. Metodika rascheta vkhodnykh kharakteristik vibratornoj antenny s reaktivnymi vklyucheniyami. Radiotekhnika. 2020. № 5 (10). S. 53–66. DOI: 10.18127/j00338486-202005(10)-06. (in Russian)
- Demirchyan K.S., Nejman L.R., Korovkin N.V, Chechurin V.L. Teoreticheskie osnovy elektrotekhniki. T. 2. SPb.: Piter. 2003. (in Russian)
- Bojko S.N., Zevakin E.A., Koryshev O.V., Trukhachev I.M. Metodika proektirovaniya spiral'nykh vibratornykh antenn s reaktivnymi vklyucheniyami. Antenny. 2020. № 6. S. 54–67. DOI: 10.18127/j03209601-202006-07. (in Russian)
- Vasil'ev A. MathCad 13 na primerakh. SPb.: BKhV-Peterburg. 2006. (in Russian)