350 rub
Journal Antennas №6 for 2023 г.
Article in number:
Direction-finding characteristics forming for wideband multibeam reflector antennas
Type of article: scientific article
DOI: https://doi.org/10.18127/j03209601-202306-01
UDC: 621.396.677
Authors:

N. I. Bobkov1, V. V. Prozhivalsky2, V. A. Gluskin3, E. A. Gondarenko4
1, 2 JSC “VNII “Gradient” (Rostov-on-Don, Russia)
3 Central Scientific Research Institute of All-Union Combined Arms and Space Forces
of the Ministry of Defense of the Russian Federation (Korolev, Russia)
4 Glavkomat of Navy of the Ministry of Defense of Russia (Saint-Petersburg, Russia)

1 ua6lac@mail.ru, 2 prow@inbox.ru

Abstract:

On the basis of a numerical experiment using the method of moments and the method of geometrical optics in the frequency domain, the radiation characteristics of a hybrid multibeam reflective tracking antenna in a wide frequency band have been studied. The reflector of the antenna is an asymmetric notch from a paraboloid, the feed is a linear cluster array, which ensures the preservation of the specified radiation characteristics in the frequency band with a relative overlap of two octaves. It has been shown that due to the appropriate choice of the amplitude distribution in the cluster, the width of the partial radiation patterns of the reflector antenna is maintained in the 4:1 frequency band with a deviation of no more than 12.5% from the nominal value, the relative level of intersection of the partial radiation patterns is maintained in the range from 6.5 up to 12 dB and the slope of the direction-finding characteristics varies from 5.3 dB/deg to 9.3 dB/deg.

Pages: 5-13
For citation

Bobkov N.I., Prozhivalsky V.V., Gluskin V.A., Gondarenko E.A. Direction-finding characteristics forming for wideband multibeam reflector antennas. Antennas. 2023. № 6. P. 5–13. DOI: https://doi.org/10.18127/j03209601-202306-01 (in Russian)

References
  1. Gillard C., Franks R. Frequency independent antenna – several new and undeveloped ideas. Microwave Journal. 1961. P. 67–72.
  2. Walton K.L., Sundberg V.C. Constant-beamwidth antenna development. IEEE Transactions on Antennas and Propagation. 1968. V. 16. № 5. P. 510–513.
  3. Bobkov N.I., Gabriel'yan D.D., Ivakina S.S., Parkhomenko N.G. Postroenie aperturnykh antenn s chastotno-nezavisimymi kharakteristikami izlucheniya. Radiotekhnika. 2016. № 1. S. 42–49. (in Russian)
  4. Patent № 2099836 RF. Shirokopolosnaya chetyrekhluchevaya zerkal'naya antenna (varianty). N.I. Bobkov, A.A. Bocharnikov, B.T. Kashubin, E.L. Logvinenko, A.A. Savelenko, A.G. Sturov, N.N. Yashin. Opubl. 20.12.1997. (in Russian)
  5. Mailloux R.J. Hybrid antennas. In Handbook of antenna design. 1982. V. 1. London. P. 415–465.
  6. Bankov S.E., Davydov A.G., Kurushin A.A. Otsenka parametrov sverkhshirokopolosnoj mnogoluchevoj gibridnoj linzovoj antenny. Zhurnal radioelektroniki [elektronnyj zhurnal]. 2018. № 1. URL: http://jre.cplire.ru/jre/jan 16/13/text.pdf. (in Russian)
  7. Voskresenskij D.I. i dr. Ustrojstva SVCh i antenny. Proektirovanie fazirovannykh antennykh reshetok: Ucheb. posobie dlya vuzov. Pod red. D.I. Voskresenskogo. Izd. 3-e, dop. i pererab. M.: Radiotekhnika. 2003. (in Russian)
  8. Ajzenberg G.Z. i dr. Antenny UKV. V 2-kh ch. Ch. 1. Pod red. G.Z. Ajzenberga. M.: Svyaz'. 1977. (in Russian)
  9. Khansen R.S. Skaniruyushchie antennye sistemy SVCh: Per. s angl. pod red. G.T. Markova i A.F. Chaplina. M.: Sov. radio. 1966. (in Russian)
  10. Bobkov N.I., Lukas V.A., Prozhivalsky V.V. Frequency-independent hybrid multi-beam reflector antenna. IEEE Xplore 2023 Radiation and Scattering of Electromagnetic Waves (RSEMW). 2023. P. 172–175.
  11. Orekhov R.S., Pavlov N.A., Tsareva A.V. Mnogoluchevaya antenna na osnove tsilindricheskoj linzy Lyuneberga so stabilizirovannym luchom. Antenny. 2021. № 6. S. 68–75. DOI: https://doi.org/10.18127/j03209601-202106-07. (in Russian)
Date of receipt: 23.10.2023
Approved after review: 07.11.2023
Accepted for publication: 21.11.2023