350 rub
Journal Antennas №4 for 2023 г.
Article in number:
Microwave lens ray tracing method as a tool for optimizing the parameters of beamforming circuits of antenna arrays
Type of article: scientific article
DOI: https://doi.org/10.18127/j03209601-202304-05
UDC: 621.396.67
Authors:

V. A. Kochetkov1, I. Yu. Lysanov2, I. V. Soldatikov3, N. V. Shishkin4
1–4 Russian Federation Security Guard Services Federal Academy (Orel, Russia)

Abstract:

In the paper, a microwave lens tracing method is studied, which takes into account the influence of the beam-forming circuit elements on the amplitude distribution of the field over the antenna array aperture and multiple reflections of rays inside the lens cavity. An approach has been used that makes it possible to simulate the structure of microwave lenses and take into account the effect of mutual bonds inside the lens body. The proposed procedures are aimed at reducing time costs in the design of lens-type beam-forming circuits in antenna arrays of radio electronic equipment in the microwave-EHF wavelength ranges. The results of comparison of the ray tracing method and electrodynamic modeling of microwave lenses have been presented.

Pages: 46-58
For citation

Kochetkov V.A., Lysanov I.Yu., Soldatikov I.V., Shishkin N.V. Microwave lens ray tracing method as a tool for optimizing the parameters of beamforming circuits of antenna arrays. Antennas. 2023. № 4. P. 46–58. DOI: https://doi.org/10.18127/j03209601-202304-05 (in Russian)

References
  1. Kochetkov V.A., Sivov A.Yu., Soldatikov I.V. i dr. Sovremennoe sostoyanie i vozmozhnye napravleniya sovershenstvovaniya elementov metodologii proektirovaniya linzovykh antennykh reshetok RES SVCh-diapazona. Informacionnye sistemy i tekhnologii. 2016. № 5 (97). S. 73–82. (in Russian)
  2. Khansen R.S. Fazirovannye antennye reshetki. Izd. 2-e. M.: Tekhnosfera. 2012. (in Russian)
  3. Zelkin E.G., Petrova R.A. Linzovye antenny. M.: Sov. radio. 1974. (in Russian)
  4. Alymov N.L., Gorshkov A.A., Kochetkov V.A. i dr. Asimptoticheskie, elektrodinamicheskie metody i modeli proektirovaniya radiolinz kak elementov diagrammoobrazuyushchikh skhem antennykh reshetok RES SVCh- i KVCh-diapazonov. Izvestiya TulGU. Tekhnicheskie nauki. 2019. № 2. S. 13–29. (in Russian)
  5. Tremblay R., Boivin A. Concepts and techniques of microwave optics. Applied Optics. 1966. V. 5. № 2. P. 249–278.
  6. Skarlupina A.V. Elektrodinamicheskij analiz diagrammoobrazuyushchikh ustrojstv na osnove SVCh linz s prinuditel'nym prelomleniem. Diss. … kand. fiz.-mat. nauk. Rostov-na-Donu. 1998. (in Russian)
  7. Shishkin N.V., Kochetkov V.A., Soldatikov I.V. i dr. Struktura oblastej primeneniya chislennykh metodov modelirovaniya linzovykh antennykh reshetok SVCh-diapazona v processe ikh proektirovaniya (1-ya chast' cikla statej). Tekhnika radiosvyazi. 2016. № 3 (30). S. 46–61. (in Russian)
  8. Shishkin N.V., Kochetkov V.A., Lysanov I.Yu. i dr. Analiz polya prelomlennoj volny v dielektricheskikh linzakh diagrammoobrazuyushchikh skhem antennykh reshetok RES SVCh-, KVCh-diapazona na osnove integral'nogo uravneniya i metoda konechnykh elementov (zaklyuchitel'naya chast' cikla). Tekhnika radiosvyazi. 2020. № 1 (44). S. 86–103. (in Russian)
  9. Gedney S.D. Introduction to the finite-difference time-domain (FDTD) method for electromagnetics. Morgan & Claypool publishers. 2011.
  10. Clemens M., Weiland T. Discrete electromagnetism with the finite integration technique. Progress in Electromagnetics Research. 2001. V. 32. P. 65–87.
  11. Jin J.M., Riley D.J. Finite element analysis of antennas and arrays. Hoboken, NJ: John Wiley & Sons. 2008. P. 254–255.
  12. Janaswamy R. An accurate moment method model for the tapered slot antenna. IEEE Transactions on Antennas and Propagation. 1989. V. 37. № 12. P. 1523–1528.
  13. Dong J., Zaghloul A.I., Sun R., Reddy C.J., Weiss S.J. Rotman lens amplitude, phase, and pattern evaluations by measurements and full wave simulations. The Applied Computational Electromagnetics Society Journal (ACES). V. 24. № 6. P. 567–576.
  14. Kolmakov I.A. Elektrodinamicheskij analiz mnogoslojnykh SVCh-struktur. Diss. … kand. fiz.-mat. nauk. SPb. 2006. (in Russian)
  15. Thornton J., Huang K.-Ch. Modern lens antennas for communications engineering. IEEE Press. Wiley. 2013.
  16. Ye Y., Wu W., Yuan W., Wu Sh., Yuan N. A method based on the theory of small reflections to design arbitrary passband microstrip filters. Radioengineering. 2018. V. 27. № 1. R. 214–220.
  17. Doroshenko V.O., Stognii N.P. Integral transforms and the regularisation method in the time-domain excitation of open PEC slotted cone scatterers. IET Microwaves Antennas & Propagation. 2021. V. 15. № 10. R. 1360–1379.
  18. Nguyen-Trong N., Hall L., Fumeaux C. Transmission-line model of non-uniform leaky-wave antennas. IEEE Transactions on Antennas and Propagation. 2016. V. 64. № 3. P. 883–893.
  19. Dong J. Microwave lens designs: Optimization, fast simulation algorithms, and 360-degree scanning techniques. Ph.D. dissertation. Virginia Tech. 2009.
  20. Pozar D.M. Microwave engineering. 2nd Ed. John Wiley & Sons. 1998.
  21. Clarke R.H. Diffraction theory and antennas. E. Horwood, Halsted Press. 1980.
  22. Cruz J.L., Gimeno B., Navarro E.A., Such V. The phase center position of a microstrip horn radiating in an infinite parallel-plate waveguide. IEEE Transactions on Antennas and Propagation. 1994. V. 42. № 8. P. 1185–1188.
  23. Simon P.S. Analysis and synthesis of Rotman lenses. 22nd AIAA International Communications Satellite Systems Conference & Exhibit. 2004.
  24. Dong J., Zaghloul A.I., Sun R., Reddy C.J. EHF Rotman lens for electronic scanning antennas. Asia Pacific Microwave Conference (APMC). Hong Kong. 2008.
  25. Kochetkov V.A., Soldatikov I.V. Chislennye metody i instrumenty modelirovaniya antennykh reshetok RES SVCh diapazona. Izvestiya TulGU. Tekhnicheskie nauki. 2021. № 9. S. 91–101. (in Russian)
Date of receipt: 20.03.2023
Approved after review: 17.04.2023
Accepted for publication: 08.08.2023