350 rub
Journal Antennas №2 for 2023 г.
Article in number:
Influence of a saltwater film on a radio-transparent dome on the amplitude-phase distribution of a millimeter-range antenna
Type of article: scientific article
DOI: https://doi.org/10.18127/j03209601-202302-01
UDC: 621.396.961
Authors:

M. Yu. Zvezdina1, A. M. Shaposhnikova2, Yu. A. Shokova3
1, 3 Don State Technical University (Rostov-on-Don, Russia)
2 Federal State Unitary Enterprise “Rostov-on-Don Research Institute of Radio Communication” (Rostov-on-Don, Russia)

Abstract:

Transition of communication systems installed on naval ships to the millimeter range requires an analysis of the effect of the saltwater film formed on the radio-transparent dome (RTD) on the radiotechnical characteristics of the mirror antenna. The latter are determined by the amplitude-phase distribution in the antenna aperture, so the topic of research is relevant.

The objective of the article is to analyze the effect of the salt-water film on the surface of a marine mounted RTD, as well as the effect of millimeter wavelength antenna placement inside the RTD on the distortion of the field generated in the outer region.

It has been shown that when installing millimeter-wave range antennas on a naval ship under a radio-transparent dome it is necessary to consider the distortions introduced by the water film on the dome surface into the generated amplitude-phase distribution when calculating the radio technical characteristics. We do so because most of the known methods for calculating the directivity characteristics of mirror antennas are based on the known amplitude-phase distribution in the antenna aperture. In the paper, the influence of the spherical dome wall and the saltwater film on the amplitude-phase distribution is taken into account as follows. Distortions in the amplitude distribution are caused by energy losses of the electromagnetic wave due to the passage of the curved dielectric wall at different angles. Phase distribution losses are due to the phase shift from the original phase as the dome wall is passed through at different angles. The angles of radio wave entry into the dome wall depend on the location of the antenna inside the radio-transparent dome. The electrical parameters of the saltwater film are determined using the well-known ITU methodology, while its thickness is found using the Gibbs formula, assuming that sea spray is similar to the intensity of drizzle rain. The studies have been conducted for the highest stiffness mode. Studies for a single-mirror antenna with a parabolic reflector 5.4 m in diameter and a radio-transparent dome 18 m in diameter showed that the water film influence is manifested in the phase front distortion, as well as a symmetry violation of the generated amplitude distribution. The degree of water salinity is manifested mainly in the distortion of the phase distribution. This is due to the fact that the electrical parameters of salt and fresh water do not differ much. The detected distortions are stronger for the horizontally polarized waves and in the case when the antenna swing center is offset with respect to the dome symmetry line.

The detected patterns allow to give a scientific justification for the choice of the amplitude-phase distribution of the mirror antenna when installing it inside the RTD on the naval ship.

Pages: 5-14
For citation

Zvezdina M.Yu., Shaposhnikova A.M., Shokova Yu.A. Influence of a saltwater film on a radio-transparent dome on the amplitude-phase distribution of a millimeter-range antenna. Antennas. 2023. № 2. P. 5–14. DOI: https://doi.org/10.18127/j03209601-202302-01 (in Russian)

References
  1. Sukharevskij O.I., Nechitajlo S.V., Khlopov G.I., Vojtovich O.A. Vliyanie snezhnogo pokrova na kharakteristiki izlucheniya reflektornykh antenn. Radiotekhnika i elektronika. 2015. T. 60. № 6. S. 633–641. (in Russian)
  2. Rappaport T.S., Xing Yu., MacCartney G.R., Molisch A.F., Mellios E., Zhang J. Overview of millimeter wave communications for fifth-generation (5G) wireless networks – with a focus on propagation models. IEEE Transactions on Antennas and Propagation. 2017. V. 65. № 3. P. 6213–6230.
  3. Tajgin V.B., Lopatin A.V. Metod obespecheniya vysokoj tochnosti formy reflektorov zerkal'nykh antenn kosmicheskikh apparatov. Kosmicheskie apparaty i tekhnologii. 2019. T. 3. № 4 (30). S. 200–208. (in Russian)
  4. Yakimov A.N. Proektirovanie mikrovolnovykh antenn s uchetom vneshnikh vozdejstvij. Penza: Izd-vo PGU. 2004. (in Russian)
  5. Sarkiseev E.Zh., Lyapunov D.Yu., Bobikhov R.S., Petrusyov A.S. Vizual'noe modelirovanie vetrovoj nagruzki na reflektor parabolicheskoj antenny svyazi v programmnom produkte COMSOL Multiphysics. Sovremennye problemy nauki i obrazovaniya. 2014. № 3. (in Russian)
  6. Patent № 2560809 RF. Sposob zashchity ot vetrovykh nagruzok na zerkal'nye antenny radiolokatsionnykh stantsij krugovogo obzora. L.P. Demyanosov, I.V. Orlov, I.V. Shirokov. Opubl. 20.08.2015. Byul. № 23. (in Russian)
  7. Patent № 2646947 RF. Zerkal'naya antenna (varianty). V.V. Khabarov, S.V. Lyuzzhukin. Opubl. 12.03.2018. Byul. № 8. (in Russian)
  8. Patent № 195169 RF. Vneshnee zashchitnoe pokrytie dlya stenok radioprozrachnykh ukrytij. V.S. Zvantsev, R.P. Alekseev. Opubl. 16.01.2019. (in Russian)
  9. Poleznaya model' № 181718 RF. Radioprozrachnoe ukrytie dlya antenn. A.A. Plakhotnicheko, M.A. Teterin, S.S. Zhakovich, D.A. Ryzhov, G.V. Fedorko. Opubl. 26.07.2018. (in Russian)
  10. Poleznaya model' № 69328 RF. Antennoe ukrytie korabel'nykh radioelektronnykh sredstv. G.A. Korzhavin, P.A. Antonov, Yu.V. Fimushin, A.V. Sushkov, M.Yu. Kal'yanov. Opubl. 10.12.2007. (in Russian)
  11. Patent № 2514134 RF. Antennaya sistema s chastichnoj metallizatsiej radioprozrachnogo zashchitnogo kozhukha. A.F. Goncharov, R.V. Emel'yanov. Opubl. 27.04.2014. Byul. № 12. (in Russian)
  12. Patent № 2699306 RF. Antennoe ukrytie. A.V. Volkov, E.V. Kravtsov, R.I. Ryumshin, M.A. Serebryakov. Opubl. 04.09.2019. Byul. № 25. (in Russian)
  13. Patent № 2504053 RF. Shirokodiapazonnoe mnogoslojnoe radioprozrachnoe ukrytie dlya antenn. Yu.M. Patrakov, A.V. Matveentsev, Yu.A. Gorev, I.E. Karpova, A.A. Motush. Opubl. 10.01.2014. Byul. № 1. (in Russian)
  14. Patent № 2292101 RF. Antennyj obtekatel'. E.I. Sedunov, V.V. Slavin, M.D. Gelemej, A.V. Sibiryatkin, N.V. Zajtseva, G.V. Korobejnikov, L.A. Korotkova, L.N. Ivanova, L.L. Belous, Yu.V. Tarakanov. Opubl. 20.01.2007. Byul. № 2. (in Russian)
  15. Gurtovnik I.G., Sokolov V.I., Trofimov N.N. i dr. Radioprozrachnye ukrytiya iz stekloplastika. M.: Mir. 2003. (in Russian)
  16. Aronov S.Yu., Gerasimov I.A., Minkin M.A. Issledovanie vliyaniya klimaticheskikh i mekhanicheskikh faktorov na kharakteristiki poloskovykh antenn, razmeshchaemykh v dielektricheskikh ukrytiyakh. Radiotekhnika. 2015. № 4. S. 6–11. (in Russian)
  17. Zvezdina M.Yu., Shaposhnikova A.M., Shokova Yu.A. Vliyanie klimaticheskikh faktorov na poteri energii elektromagnitnoj volny millimetrovogo diapazona pri prokhozhdenii cherez sloj osadkov na reflektore zerkal'noj antenny. Radiotekhnika. 2021. № 7. S. 98–107. (in Russian)
  18. Samburov N.V. Mnogochastotnyj sposob izmereniya poter' v obtekatelyakh. Vestnik YuUrGU. Ser. Komp'yuternye tekhnologii, upravlenie, radioelektronika. 2015. T. 15. № 3. S. 83–94. (in Russian)
  19. Bodryshev V.V., Larin A.A. Analiz vliyaniya formy krupnogabaritnykh obtekatelej na tochnost' izmereniya velichiny poter' energii. Izvestiya Tul'skogo gosudarstvennogo universiteta. Tekhnicheskie nauki. 2022. Vyp. 22. S. 348–353. (in Russian)
  20. Baskov K.M., Fedorov S.A., Semenenko V.N., Politiko A.A., Krasnolyubov I.I., Chistyaev V.A. Radioprozrachnyj obtekatel' s kompensatsionnym sloem dlya snizheniya oshibok pelenga. Radiotekhnika i elektronika. 2022. T. 67. № 3. S. 244–248. (in Russian)
  21. Makushkin I.E., Dorofeev A.E., Gribanov A.N., Gavrilova S.E., Sinani A.I. Metod izmereniya uglovykh oshibok pelenga v sisteme «antenna – obtekatel'» v oblasti skanirovaniya lucha FAR. Vestnik Kontserna VKO «Almaz-Antej». 2019. № 2. S. 7–24. (in Russian)
  22. Xu W., Jie Zh., Li P., Hu N., Qiu Y.Y. Amplitude-phase-based interval analysis method for radomes with thickness errors and its robust-design application. IEEE Antennas and Wireless Propagation Letters. 2020. V. 19. № 7. P. 1103–1107.
  23. Mancini A., Lebron R.M., Salazar J.L. The impact of a wet S-band radome on dual-polarized phased-array radar system performance. IEEE Transactions on Antennas and Propagation. 2019. V. 67. № 1. P. 207–220.
  24. Loh J.L., Chang W.-Y., Hsu H.-W., Lin P.-F., Chang P.-L., Teng Y.-L., Liou Y.-C. Long-term assessment of the reflectivity biases and wet-radome effect using collocated operational S- and C-band dual-polarization radars. IEEE Transactions on Geoscience and Remote Sensing. 2022. V. 60. DOI: 10.1109/TGRS.2022.3170609.
  25. Parry C., Fenn A., Morris A., Thomas H. Analysis and mitigation of the reflected power on an S-band planar phased array antenna transmitting in a wet spherical radome. Proc. IEEE International Symposium on Phased array systems & Technology (PAST–22). 2022. Waltham, MA, USA. DOI: 10.1109/PAST49659.2022.9974971.
  26. Kurri M., Huuskonen A. Measurement of the transmission loss of the radome at different rain intensities. Journal of Atmospheric and Oceanic Technology. 2008. V. 25. № 9. P. 1590–1599.
  27. Vel'miskin D.I., Kuksenko V.V., Sirotenko T.V. Vliyanie statisticheski neodnorodnykh gidroobrazovanij na poverkhnosti ukrytiya na kharakteristiki antenn MRL. Visnik Odes'kogo derzhavnogo ekologichnogo universitetu. 2006. Vyp. 3. S. 131–139. (in Russian)
  28. Baskov K.M., Fedorenko A.M., Fedorov S.A. Metodika rascheta radiotekhnicheskikh kharakteristik sistemy antenna – obtekatel'. Zhurnal radioelektroniki. 2016. № 2. [Elektronnyj resurs]. URL: http://jre.cplire.ru/jre/feb16/11/text.html (data obrashcheniya: 27.01.2023). (in Russian)
  29. Zhidkova O.G., Borodavin A.V., Mityushkina D.V., Bersekova N.V. Proektirovanie radioprozrachnykh konstruktsij iz kompozitsionnykh materialov. Konstruktsii iz kompozitsionnykh materialov. 2020. № 1. S. 6–12. (in Russian)
  30. Nikolaev P.V., Samburov N.V. Radioprozrachnye ukrytiya na osnove listovogo ftoroplasta. Voprosy radioelektroniki. Seriya RLT. 2016. № 10. Vyp. 2. S. 77–84. (in Russian)
  31. Rodionov N.N. Optimizatsiya formovaniya polimernogo kompozitsionnogo materiala s uluchshennym kompleksom kharakteristik. Plasticheskie massy. 2019. № 3–4. S. 55–58. (in Russian)
  32. Notaroš B.M. Meteorological electromagnetics. IEEE Antennas & Propagation Magazine. 2021. V. 63. № 2. P. 14–27.
  33. ITU-R R.527-6 (09/2021). Electrical characteristics of the surface of the Earth. Ser. R. Radiowave propagation. Geneva: ITU-R. 2021.
  34. Sedov L.I. Mekhanika sploshnoj sredy. T. 1. M.: Nauka. 1970. (in Russian)
  35. Zvezdina M.Yu., Shaposhnikova A.M., Shokova Yu.A. Matematicheskaya model' protsessa nakopleniya vody v reflektore zerkal'noj antenny millimetrovogo diapazona dlin voln. Sb. trudov XXVIII Mezhdunar. nauchno-tekhnich. konf. «Radiolokatsiya, navigatsiya, svyaz'». 27–29 sentyabrya 2022 g. Voronezh. T. 5. Voronezh: Izd. dom VGU. 2022. S. 131–144. (in Russian)
  36. Sergienko V.I., Denisenko Yu.P., Dobrzhanskij V.G., Ognev Yu.F., Verdiev O.Sh., Dushina N.E. Laboratornye ispytaniya korrozionnoj stojkosti legkikh splavov metodom solenogo tumana putem modelirovaniya subtropicheskogo klimata. Vestnik inzhenernoj shkoly DVFU. 2015. № 3 (24). S. 85–89. (in Russian)
  37. Solenost' po geograficheskim ob''ektam [Elektronnyj resurs]. URL: https://ru.wikipedia.org/wiki/Solyonost' (data obrashcheniya: 08.02.2023). (in Russian)
Date of receipt: 16.01.2023
Approved after review: 06.02.2023
Accepted for publication: 22.03.2023