350 rub
Journal Antennas №6 for 2022 г.
Article in number:
New geometry of the L-band monopulse comparator in quasi-coaxial rectangular waveguide
Type of article: scientific article
DOI: https://doi.org/10.18127/j03209601-202206-07
UDC: 621.372.62
Authors:

E. O. Mozharov1, E. S. Litvinov2, K. P. Chemaev3
1, 2 Bauman Moscow State Technical University’s Research Institute of Radioelectronic Technology (Moscow, Russia)
3 Bauman Moscow State Technical University (Moscow, Russia)

Abstract:

Classic microstrip lines, despite their prevalence, simplicity in design and manufacturing, have a number of technical disadvantages. Relatively high losses in comparison with waveguides and coaxial lines are among these disadvantages. It is possible to combine advantages in ease of manufacturing due to PCB technologies and loss reduction in mono-pulse comparator (MPC). This is achieved by the quasi-coaxial rectangular waveguides.

The purpose of the article is to develop and experimentally confirm the electrical characteristics of the new geometry L-band MPC on a quasi-coaxial rectangular waveguide.

Technological and design features of rectangular quasi-coaxial waveguides and several geometries of the L-band MPC topology have been considered.

The L-band MPC has been developed and manufactured on the basis of the new selected geometry. An experimental test of the electrical characteristics of the new geometry developed L-band MPC on a quasi-coaxial rectangular waveguide has been performed. This test confirmed the accuracy of the design and the quality of the electrodynamic model.

The developed L-band MPC of the new geometry on a quasi-coaxial rectangular waveguide makes it possible to fit the device into the required design of a linear phased array and to obtain sum and difference radiation patterns with less losses than using a classical ring hybrid bridge on an microstrip line.

Pages: 79-88
For citation

Mozharov E.O., Litvinov E.S., Chemaev K.P. New geometry of the L-band monopulse comparator in quasi-coaxial rectangular waveguide. Antennas. 2022. № 6. P. 79–88. DOI: https://doi.org/10.18127/j03209601-202206-07 (in Russian)

References
  1. Vilenskiy A.R., Litun V.I., Lyulyukin K.V. Wideband beam steering antenna array of printed cavity-backed elements with integrated EBG structure. IEEE Antennas and Wireless Propagation Letters. 2019. № 2. P. 245–249.
  2. Semernya R.E., Chernyshev S.L., Vilenskij A.R., Mozharov E.O. Razrabotka topologii kompaktnykh kvaziellipticheskikh polosovykh mikropoloskovykh fil'trov. Izvestiya vysshikh uchebnykh zavedenij Rossii. Radioelektronika. 2018. № 6. S. 41–53. (in Russian)
  3. Izyumova T.I., Sviridov V.T. Volnovody, koaksial'nye i poloskovye linii. M.: Energiya. 1975. (in Russian)
  4. Musa S.M., Sadiku M.N.O. Analysis of rectangular coaxial lines. 2007 IEEE Region 5 Technical Conference. 2007. P. 322–325.
  5. Gowrish B. et al. Mono-pulse comparator in rectangular co-axial guide for satellite ground station. IEEE Microwave and Wireless Components Letters. 2016. V. 26. № 9. P. 666–668.
  6. Lukic M. et al. Modeling of realistic rectangular μ-coaxial lines. IEEE Transactions on Microwave Theory and Techniques. 2006. V. 54. № 5. P. 2068–2076.
  7. Patent № 2476962 RF. Koaksial'naya liniya. A.V. Khomyakov, E.V. Manaenkov, A.V. Ivanov. Opubl. 27.02.2013. Byul. № 6. (in Russian)
  8. Grigoryan D.S., Torbin S.A. Sposob zashchity monoimpul'snogo radiopelengatora ot aktivnoj shumovoj pomekhi po osnovnym lepestkam diagramm napravlennosti antenn. Antenny. 2014. № 7. S. 54–61. (in Russian)
  9. Rusov Yu.S., Ovechkin V.S., Krekhtunov V.M. Razrabotka dvenadtsatirupornogo monoimpul'snogo obluchatelya dlya aperturnoj antenny. Sb. materialov 17-j Mezhdunar. konf. «SVCh-tekhnika i telekommunikatsionnye tekhnologii». Sevastopol'. 2007. T. 1. S. 423–424. (in Russian)
  10. Krekhtunov V.M., Tajkov A.V., Dolbnev A.V. Monoimpul'snyj obluchatel' dvukhzerkal'noj antenny KVCh diapazona. Sb. materialov 11-j Mezhdunar. konf. «SVCh-tekhnika i telekommunikatsionnye tekhnologii». Sevastopol'. 2001. S. 354–355. (in Russian)
  11. Krekhtunov V.M., Rusov Yu.S., Golubtsov M.E. Vysokotekhnologichnye monoimpul'snye obluchateli millimetrovogo diapazona voln. Sb. materialov XVI Mezhdunar. nauch.-tekhn. konf. «Radiolokatsiya, navigatsiya, svyaz'». Voronezh. 2010. T. 3. S. 1677–1685. (in Russian)
  12. Voskresenskij D.I. i dr. Ustrojstva SVCh i antenny: Ucheb. posobie. Izd. 2-e, dop. i pererab. M.: Radiotekhnika. 2006. (in Russian)
  13. Dmitrienko G.V. Proektirovanie poloskovykh ustrojstv SVCh: Ucheb. posobie. Ul'yanovsk: UlGTU. 2001. (in Russian)
  14. Pon C.Y. Hybrid-ring directional coupler for arbitrary power divisions. IRE Transactions on Microwave Theory and Techniques. 1961. V. 9. № 6. P. 529–535.
  15. Bhilegaonkar S., Dhande A. Mono-pulse comparator network system with hybrid rings. 2013 19th Asia-Pacific Conference on Communications (APCC). 2013. P. 556–560.
  16. Ionescu V. Numerical modelling of 180° hybrid ring couplers operating in the GSM 1800 band. 2021 International Semiconductor Conference (CAS). 2021. P. 53–56.
  17. Patent № 2544764 RF. Koaksial'nyj trakt. A.V. Khomyakov, E.V. Manaenkov, A.V. Ivanov. Opubl. 20.03.2015. Byul. № 8. (in Russian)
  18. Abdulbari A.A. et al. A review of hybrid couplers: State-of-the-art, applications, design issues and challenges. International Journal of Numerical Modelling: Electronic Networks, Devices and Fields. 2021. V. 34. № 5. P. e2919.
  19. Betelin V.G., Kiselev A.A., Korobtsov G.M. Mnogokanal'nyj dvukhdiapazonnyj delitel' moshchnosti dlya FAR L-diapazona. Antenny. 2014. № 6. S. 8–14. (in Russian)
Date of receipt: 19.09.2022
Approved after review: 04.10.2022
Accepted for publication: 21.11.2022