350 rub
Journal Antennas №5 for 2022 г.
Article in number:
Results of design of the radio-transparent fairing of the onboard satellite terminal of an unmanned aerial vehicle with long flight du-ration. Part 3. Results of field testing and experimental studies of radio technical characteristics
Type of article: scientific article
DOI: https://doi.org/10.18127/j03209601-202205-04
UDC: 621.391
Authors:

D. G. Pantenkov1, S. I. Shalgunov2, A. T. Egorov3, A. M. Vorobyev4, V. A. Koltsov5
1, 3, 4 JSC «Kronstadt» (Moscow, Russia)
2, 5 JSC «Scientific and production association Stekloplastic» (Solnechnogorsk, Russia)

Abstract:

Currently, large-scale complexes with unmanned aerial vehicles (CUAVs) of long flight duration, which can stay in the air for up to several days, have received great development and widespread use. At the same time, such UAVs of heavy and super-heavy classes can have a wide range of payloads on board – a radar station, a multispectral optoelectronic system on a gyro stabilized platform, a digital aerial photo system, a radio system and a radio monitoring system. Long flight duration automatically means a significant distance between the UAV and the ground control station (GCS). In this case, satellite communication channels become the main and only means of command and information exchange between UAVs and GCS. One of the main parameters of any communication channel is the information transfer rate. With regard to satellite communication of the radio link UAVs – spacecraft (SC) – GCS and GCS – SC – UAVs have a significant energy deficit on the signal propagation path due to the need to relay information through SCs in high orbits (geostationary and highly elliptical). Taking into account the above, the relevance and importance of the tasks solved by modern complexes with UAVs for special and civil purposes, a number of essential requirements are imposed on the design of radio-transparent fairings (RTF) for UAVs: in terms of strength, resistance to external influencing factors, aerodynamics and, of course, radio transparency in relation to minimization energy losses of the signal when passing through its walls, which ultimately significantly affects the final transmission rate of target information. This article has a high relevance, strict practical orientation and is devoted to the consideration of the results of the design of the RTF for a large-sized heavy-class UAV, obtained both as a result of electrodynamic modeling, and during experimental workings and field experiments, analysis of the obtained characteristics of the RTF. Due to its large volume, the article is structurally divided into three interconnected parts. In the first part of the article, as a statement of the problem, the main system requirements for the developed RTF are formulated, the analysis of the main materials used from which it is fundamentally possible to manufacture RTF, their physical-mechanical and dielectric properties, wall designs, manufacturing technologies of RTF is carried out. It is quantitatively shown that the choice of optimal materials and the design of the walls of the RTF should be based on a reasonable compromise between the radio engineering and elastic-strength characteristics of the projected radio-transparent product.

Pages: 56-69
References
  1. Pantenkov D.G., Shalgunov S.I., Egorov A.T., Vorob'ev A.M., Kol'tsov V.A. Rezul'taty proektirovaniya radioprozrachnogo obtekatelya dlya bortovogo sputnikovogo terminala bespilotnogo letatel'nogo apparata bol'shoj prodolzhitel'nosti poleta. Chast' 1. Analiz osnovnykh faktorov, vliyayushchikh na proektirovanie aviatsionnogo radioprozrachnogo obtekatelya. Antenny. 2022. № 2. S. 63–84. (in Russian)
  2. Pantenkov D.G., Shalgunov S.I., Egorov A.T., Vorob'ev A.M., Kol'tsov V.A. Rezul'taty proektirovaniya radioprozrachnogo obtekatelya dlya bortovogo sputnikovogo terminala bespilotnogo letatel'nogo apparata bol'shoj prodolzhitel'nosti poleta. Chast' 2. Radiotekhnicheskie kharakteristiki i rezul'taty komp'yuternogo modelirovaniya. Antenny. 2022. № 4. S. 59–80. (in Russian)
  3. Rusin M.Yu, Vasilenko V.V., Romashin V.G., Stepanov P.A., Atroshchenko I.G., Shutkina O.V. Kompozitsionnye materialy dlya radioprozrachnykh obtekatelej letatel'nykh apparatov. Novye ogneupory. 2014. № 10. S. 19–23. (in Russian)
  4. Romashin A.G., Gajdachuk V.E., Karpov Ya.S., Rusin M.Yu. Radioprozrachnye obtekateli letatel'nykh apparatov. Proektirovanie, konstruktsionnye materialy, tekhnologiya proizvodstva, ispytaniya: Ucheb. posobie. Khar'kov: Natsional'nyj aerokosmicheskij universitet «KhAI». 2003. (in Russian)
  5. Rusin M.Yu. Proektirovanie golovnykh obtekatelej raket iz keramicheskikh i kompozitsionnykh materialov: Ucheb. posobie. M.: Izd-vo MGTU im. N.E. Baumana. 2005. (in Russian)
  6. Shalgunov S.I., Trofimov A.N., Sokolov V.I., Morozova I.V., Prokhorova Yu.S. Osobennosti proektirovaniya i razrabotki radioprozrachnykh obtekatelej i ukrytij, rabotayushchikh v santimetrovom i millimetrovom diapazonakh radiovoln. Antenny. 2015. № 3. S. 63–67. (in Russian)
  7. Sokolov V.I., Gurtovnik I.G., Shalgunov S.I. Stekloplastiki dlya radioprozrachnykh obtekatelej i ukrytij. Radiotekhnika. 2002. № 11. S. 51–55. (in Russian)
  8. Popova A.P., Sukhanov A.S., Babkina L.A. Modelirovanie radioprozrachnogo obtekatelya iz kompozitsionnykh materialov. Sb. materialov konferentsii «Aktual'nye problemy aviatsii i kosmonavtiki». 2016. T. 1. № 12. S. 267–269. (in Russian)
  9. Al'perin V.I., Korol'kov N.V., Motavkin A.V. Konstruktsionnye stekloplastiki. M.: Khimiya. 1979. (in Russian)
  10. Kablov E.N. Innovatsionnye razrabotki FGUP «VIAM» GNTs RF po realizatsii «Strategicheskikh napravlenij razvitiya materialov i tekhnologij ikh pererabotki na period do 2030 goda». Aviatsionnye materialy i tekhnologii. 2015. № 1 (34). S. 3–33. (in Russian)
  11. Kablov E.N., Grashchenkov D.V., Isaeva N.V., Solntsev S.S., Sevast'yanov V.G. Vysokotemperaturnye konstruktsionnye kompozitsionnye materialy na osnove stekla i keramiki dlya perspektivnykh izdelij aviatsionnoj tekhniki. Steklo i keramika. 2012. №4. S. 7–11. (in Russian)
  12. Gurtovnik I.G., Sokolov V.I., Trofimov N.N. i dr. Radioprozrachnye izdeliya iz stekloplastikov. Pod red. V.I. Sokolova. M.: Mir. 2003. (in Russian)
  13. Armirovannye plastiki: Sprav. posobie. Pod red. G.S. Golovkina. M.: MAI. 1997. (in Russian)
  14. Kaplun V.A. Obtekateli antenn SVCh. M.: Sov. radio. 1974. (in Russian)
  15. GOST R 8.623–2006. GSI. Otnositel'naya dielektricheskaya pronitsaemost' i tangens ugla dielektricheskikh poter' tverdykh dielektrikov. Metodiki vypolneniya izmerenij v diapazone sverkhvysokikh chastot.
  16. Egorov A.T., Lomakin A.A., Pantenkov D.G. Matematicheskie modeli otsenki skrytnosti sputnikovykh kanalov radiosvyazi s bespilotnymi letatel'nymi apparatami. Chast' 1. Trudy uchebnykh zavedenij svyazi. 2019. T. 5. № 3. S. 19–26. (in Russian)
  17. Lomakin A.A., Pantenkov D.G., Sokolov V.M. Matematicheskie modeli otsenki skrytnosti sputnikovykh kanalov radiosvyazi s bespilotnymi letatel'nymi apparatami. Chast' 2. Trudy uchebnykh zavedenij svyazi. 2019. T. 5. № 4. S. 37–48. (in Russian)
  18. Pantenkov D.G. Rezul'taty analiza nazemnykh ispytanij kompleksa sredstv sputnikovoj radiosvyazi dlya bespilotnykh letatel'nykh apparatov. Vestnik Ryazanskogo gosudarstvennogo radiotekhnicheskogo universiteta. 2019. № 69. S. 42–51. (in Russian)
  19. Pantenkov D.G., Lomakin A.A. Otsenka ustojchivosti sputnikovogo kanala upravleniya bespilotnymi letatel'nymi apparatami. Radiotekhnika. 2019. T. 83. № 11 (17). S. 43–50. (in Russian)
  20. Pantenkov D.G. Tekhnicheskie kharakteristiki bortovykh retranslyatorov kosmicheskikh apparatov dlya obespecheniya zagorizontnoj radiosvyazi s bespilotnymi letatel'nymi apparatami. Radiotekhnika. 2020. T. 84. № 5 (9). S. 58–74. (in Russian)
  21. Kerber M.L., Vinogradov V.M., Golovkin G.S. i dr. Polimernye kompozitsionnye materialy: struktura, svojstva, tekhnologiya. Pod obshch. red. A.A. Berlina. Izd. 5-e. SPb.: TsOP «Professiya». 2018. (in Russian)
  22. Vasil'ev V.V., Protasov V.D., Bolotin V.V. i dr. Kompozitsionnye materialy. Spravochnik. Pod obshch. red. V.V. Vasil'eva, Yu.M. Tarnopol'skogo. M.: Mashinostroenie. 1990. (in Russian)
  23. Zajtsev A.N., Ivashchenko P.A., Myl'nikov A.V. Izmereniya na sverkhvysokikh chastotakh i ikh metrologicheskoe obespechenie. M.: Izd-vo standartov. 1989. (in Russian)
  24. Born M., Vol'f E. Osnovy optiki: Per. s angl. Pod red. G.P. Motulevich. M.: Nauka. 1979. (in Russian)
  25. Obraztsov I.F., Tomashevskij V.T., Shalygin V.I., Yakovlev V.S. Nauchnye osnovy i metody upravleniya tekhnologicheskimi protsessami pererabotki polimernykh kompozitsionnykh materialov v izdeliya mashinostroeniya. Pod obshch. red. V.T. Tomashevskogo. 2002. (in Russian)
  26. Trofimov N.N., Kanovich M.Z. Osnovy sozdaniya polimernykh kompozitov. M.: Nauka. 1999. (in Russian)
  27. Spravochnik po teorii uprugosti. Pod red. P.M. Varvaka i A.F. Ryabova. Kiev: Budivel'nik. 1971. (in Russian)
  28. Bazhanov V.L., Gol'denblat I.I., Kopov V.A., Pospelov A.D., Sinyukov A.M. Plastinki i obolochki iz stekloplastikov. M.: Vysshaya shkola. 1970. (in Russian)
Date of receipt: 31.01.2022
Approved after review: 14.03.2022
Accepted for publication: 26.09.2022