Journal Antennas №5 for 2022 г.
Article in number:
Synthesis and design of plane reflectarrays of microstrip elements for scanning antenna systems of the 60 GHz band
Type of article: scientific article
DOI: https://doi.org/10.18127/j03209601-202205-02
UDC: 621.396.67
Authors:

V. M. Seleznev1, O. V. Bolkhovskaya2, A. A. Maltsev3
1–3 Lobachevsky State University of Nizhny Novgorod (Nizhny Novgorod, Russia)

Abstract:

Problem statement. The new 5th generation mobile communications paradigm implies the deployment of small base stations and access points in the coverage areas of existing macro-cells in places with a large concentration of users (hot-spots). At the same time, the antennas used at such stations should have specially shaped radiation patterns, a high gain and the ability of scanning to track mobile users.

Objective. This article presents the results of the development of three scanning reflectarray antennas (RAAs) in the 60 GHz band that form sector, narrow beam and cosecant antenna radiation patterns (RPs). The reflectarrays have been synthesized using an iterative method in which the reference amplitude RP belonged to the class of exponential integer functions. In the paper we use the original reference functions of phase RPs, which allow a more accurate approximation to the required shape of the antenna main beam to be obtained.

Results. The characteristics of the antenna systems designed have been investigated using electromagnetic modeling in the CST Microwave studio. According to the simulation results for all the presented arrays, the shape of the main beams of the RPs corresponds to the specified reference models in the wide frequency band up to 3 GHz. The key feature of the RAA is the possibility of electronic scanning in the azimuthal plane in a ±15° sector.

Practical significance. The developed scanning RAAs may find practical applications in Wi-Fi and 5G NR communication systems in the millimeter wavelength bands.

Pages: 30-48
For citation

Seleznev V.M., Bolkhovskaya O.V., Maltsev A.A. Synthesis and design of plane reflectarrays of microstrip elements for scanning antenna systems of the 60 GHz band. Antennas. 2022. № 5. P. 30–48. DOI: https://doi.org/10.18127/j03209601-202205-02

References
  1. IEEE Standard for information technology – Telecommunications and information exchange between systems – Local and metropolitan area networks – Specific requirements – Part 11: Wireless LAN medium access control (MAC) and physical layer (PHY) specifications amendment 3: Enhancements for very high throughput in the 60 GHz band. IEEE Std 802.11ad-2012 (Amendment to IEEE Std 802.11-2012, as amended by IEEE Std 802.11ae-2012 and IEEE Std 802.11aa-2012). 2012. P. 1–628. DOI: 10.1109/IEEESTD. 2012.6392842.
  2. IEEE Standard for information technology – Telecommunications and information exchange between systems – Local and metropolitan area networks – Specific requirements – Part 11: Wireless LAN medium access control (MAC) and physical layer (PHY) specifications amendment 2: Enhanced throughput for operation in license-exempt bands above 45 GHz. IEEE Std 802.11ay-2021 (Amendment to IEEE Std 802.11-2020 as amendment by IEEE Std 802.11ax-2021). 2021. P. 1–768. DOI: 10.1109/IEEESTD.2021. 9502046.
  3. Sakaguchi K., et al. Where, when, and how mmWave is used in 5G and beyond. IEICE Transactions on Electronics. 2017. V. E100.C. № 10. P. 790–808. DOI: 10.1587/transele.E100. C.790.
  4. Okasaka S., et al. Proof-of-concept of a millimeter-wave integrated heterogeneous network for 5G cellular. Sensors. 2016. V. 16. № 9. P. 1362. DOI: 10.3390/s16091362.
  5. Maltsev A., Sadri A., Pudeyev A., Bolotin I. Highly directional steerable antennas: High-gain antennas supporting user mobility or beam switching for reconfigurable backhauling. IEEE Vehicular Technology Magazine. 2016. V. 11. № 1. P. 32–39. DOI: 10.1109/ MVT.2015.2508318.
  6. Lamminen A.E.I., et al. Beam-switching dual-spherical lens antenna with low scan loss at 71–76 GHz. IEEE Antennas and Wireless Propagation Letters. 2018. V. 17. № 10. P. 1871–1875. DOI: 10.1109/LAWP.2018.2868543.
  7. Maltsev A., Lomayev A., Pudeyev A., Bolotin I., Bolkhovskaya O., Seleznev V. Millimeter-wave toroidal lens-array antennas experimental measurements. 2018 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting. Boston, MA, USA. 2018. P. 607–608. DOI: 10.1109/APUSNCURSINRSM.2018.8608633.
  8. Hill T.A., Kelly J.R., Khalily M., Brown T.W.C. Cascaded Fresnel lens antenna for scan loss mitigation in millimeter wave access points. IEEE Transactions on Antennas and Propagation. 2020. V. 68. № 10. P. 6879–6892. DOI: 10.1109/TAP.2020.2992837.
  9. Maltsev A., Bolkhovskaya O., Seleznev V. Scanning toroidal lens-array antenna with a zoned profile for 60 GHz band. IEEE Antennas and Wireless Propagation Letters. 2021. V. 20. № 7. P. 1150–1154. DOI: 10.1109/LAWP.2021.3073913.
  10. Visentin T., Keusgen W., Weiler R. Dual-polarized square-shaped offset-fed reflectarray antenna with high gain and high bandwidth in the 60 GHz domain. 2015 9th European Conference on Antennas and Propagation (EuCAP). Lisbon, Portugal. 2015. P. 1–5.
  11. Bolkhovskaya O., Maltsev A., Seleznev V., Bolotin I. Cost-efficient RAA technology for development of the high-gain steerable antennas for mmWave communications. Machine Learning and Artificial Intelligence. 2020. V. 332. P. 346–353. DOI: 10.3233/FAIA200800.
  12. Zhang W., Liu Y., Jia Y. Circularly polarized antenna array with low RCS using metasurface-inspired antenna units. IEEE Antennas and Wireless Propagation Letters. 2019. V. 18. № 7. P. 1453–1457. DOI: 10.1109/LAWP.2019.2919716.
  13. Jafargholi A., Jafargholi A., Choi J.H. Mutual coupling reduction in an array of patch antennas using CLL metamaterial superstrate for MIMO applications. IEEE Transactions on Antennas and Propagation. V. 67. № 1. P. 179–189. 2019. DOI: 10.1109/TAP.2018. 2874747.
  14. Alibakhshikenari M., et al. Singular integral formulations for electrodynamic analysis of metamaterial-inspired antenna array. IEEE Antennas and Wireless Propagation Letters. 2021. V. 20. № 2. P. 179–183. DOI: 10.1109/LAWP.2020.3043380.
  15. Xi Q., Ma C., Li H., Zhang B., Li C., Ran L. A reconfigurable planar Fresnel lens for millimeter-wave 5G frontends. IEEE Transactions on Microwave Theory and Techniques. 2020. V. 68. № 11. P. 4579–4588. DOI: 10.1109/TMTT.2020.3025337.
  16. Nayeri P., Yang F., Elsherbeni A.Z. Bifocal design and aperture phase optimizations of reflectarray antennas for wide-angle beam scanning performance. IEEE Transactions on Antennas and Propagation. 2013. V. 61. № 9. P. 4588–4597. DOI: 10.1109/TAP.2013. 2264795.
  17. Mei P., Zhang S., Pedersen G.F. A low-cost, high-efficiency and full-metal reflectarray antenna with mechanically 2-D beam-steerable capabilities for 5G applications. IEEE Transactions on Antennas and Propagation. 2020. V. 68. № 10. P. 6997–7006. DOI: 10.1109/TAP.2020.2993077.
  18. Arrebola M., Encinar J.A., Barba M. Multifed printed reflectarray with three simultaneous shaped beams for LMDS central station antenna. IEEE Transactions on Antennas and Propagation. 2008. V. 56. № 6. P. 1518–1527. DOI: 10.1109/TAP.2008.923360.
  19. Thiel M., Menzel W. A multiple-beam sector antenna with a dual planar reflectarray arrangement. 2006 European Radar Conference. 2006. P. 53–56. DOI: 10.1109/EURAD.2006.280271.
  20. Kamoda H., Iwasaki T., Tsumochi J., Kuki T., Hashimoto O. 60-GHz electronically reconfigurable large reflectarray using single-bit phase shifters. IEEE Transactions on Antennas and Propagation. 2011. V. 59. № 7. P. 2524–2531. DOI: 10.1109/TAP.2011.2152338.
  21. Karnati K.K., Trampler M.E., Gong X. A monolithically BST-integrated Ka-band beamsteerable reflectarray antenna. IEEE Transactions on Antennas and Propagation. 2017. V. 65. № 1. P. 159–166. DOI: 10.1109/TAP.2016.2627007.
  22. Li X., et al. Broadband electronically scanned reflectarray antenna with liquid crystals. IEEE Antennas and Wireless Propagation Letters. 2021. V. 20. № 3. P. 396–400. DOI: 10.1109/LAWP.2021.3051797.
  23. Encinar J.A. Design of two-layer printed reflectarrays using patches of variable size. IEEE Transactions on Antennas and Propagation. 2001. V. 49. № 10. P. 1403–1410. DOI: 10.1109/8.954929.
  24. Li W., Gao S., Zhang L., Luo Q., Cai Y. An ultra-wide-band tightly coupled dipole reflectarray antenna. IEEE Transactions on Antennas and Propagation. 2018. V. 66. № 2. P. 533–540. DOI: 10.1109/TAP.2017.2772311.
  25. Li C., Xu S., Yang F., Li M. Design and optimization of a mechanically reconfigurable reflectarray antenna with pixel patch elements using genetic algorithm. 2019 IEEE MTT-S International Wireless Symposium (IWS). 2019. P. 1–3. DOI: 10.1109/IEEE-IWS.2019.8804092.
  26. Nayeri P., Yang F., Elsherbeni A.Z. Design of single-feed reflectarray antennas with asymmetric multiple beams using the particle swarm optimization method. IEEE Transactions on Antennas and Propagation. 2013. V. 61. № 9. P. 4598–4605. DOI: 10.1109/ TAP.2013.2268243.
  27. Niccolai A., Zich R., Beccaria M., Pirinoli P. SNO based optimization for shaped beam reflectarray antennas. 2019 13th European Conference on Antennas and Propagation (EuCAP). 2019. P. 1–4.
  28. Niccolai A., Beccaria M., Zich R.E., Massaccesi A., Pirinoli P. Social network optimization based procedure for beam-scanning reflectarray antenna design. IEEE Open Journal of Antennas and Propagation. 2020. V. 1. P. 500–512. DOI: 10.1109/OJAP.2020.3022935.
  29. Prado D.R., Arrebola M., Pino M.R., Las-Heras F. Improved reflectarray phase-only synthesis using the generalized intersection approach with dielectric frame and first principle of equivalence. International Journal of Antennas and Propagation. 2017. V. 2017. Article ID 3829390. DOI: 10.1155/2017/3829390.
  30. Martinez-de-Rioja E., Vaquero Á.F., Arrebola M., Carrasco E., Encinar J.A., Achour M. Passive dual-polarized shaped-beam reflectarrays to improve coverage in millimeter-wave 5G networks. 2021 15th European Conference on Antennas and Propagation (EuCAP). 2021. P. 1–5. DOI: 10.23919/EuCAP51087.2021.9411196.
  31. Zelkin E.G., Kravchenko V.F., Pustovoit V.I. Synthesis of directivity patterns for nonequidistant antenna arrays by means of atomic functions. Doklady Physics. 2001. V. 46. № 7. P. 476–480. DOI: 10.1134/1.1390400.
  32. Dahlman E., Parkvall S., Skold J. 5G NR: The next generation wireless access technology. Academic Press is an imprint of Elsevier. 2018.
  33. Vaskelainen L.I. Constrained least-squares optimization in conformal array antenna synthesis. IEEE Transactions on Antennas and Propagation. 2007. V. 55. № 3. P. 859–867. DOI: 10.1109/TAP.2007.891860.
  34. Weng W., Yang F., Elsherbeni A.Z. Linear antenna array synthesis using Taguchi's method: A novel optimization technique in electromagnetics. IEEE Transactions on Antennas and Propagation. 2007. V. 55. № 3. P. 723–730. DOI: 10.1109/TAP.2007.891548.
  35. Zelkin E.G., Kravchenko V.F., Pustovoit V.I., Timoshenko V.V. Synthesis of plane radiating systems on the basis of atomic functions. Doklady Physics. 2000. V. 45. № 9. P. 449–453. DOI: 10.1134/1.1318988.
  36. Pan H.K., Horine B.D., Ruberto M., Ravid S. Mm-wave phased array antenna and system integration on semi-flex packaging. 2011 IEEE International Symposium on Antennas and Propagation (APSURSI). Spokane, WA, USA. 2011. P. 2059–2062. DOI: 10.1109/ APS.2011.5996913.
  37. Seleznev V.M. A high-gain steerable reflective array antenna for V-band wireless communications. Radiotekhnika. 2022. V. 86. № 3. P. 115–123. DOI: 10.18127/j00338486-202203-11.
  38. Seleznev V.M. Broadband scanning integrated lens antenna for 5G millimeter-wave applications. Radiotekhnika. 2022. V. 86. № 6. P. 122–130. DOI: 10.18127/j00338486-202206-15.
Date of receipt: 26.08.2022
Approved after review: 09.09.2022
Accepted for publication: 26.09.2022
Download