350 rub
Journal Antennas №4 for 2022 г.
Article in number:
Antennas based on a multilayer spherical Luneberg lens: investigation and optimization of characteristics
Type of article: scientific article
DOI: https://doi.org/10.18127/j03209601-202204-05
UDC: 621.396.677.85
Authors:

E. V. Zakharov1, A. I. Skorodumov2, Yu. Ya. Kharlanov3
1 Lomonosov Moscow State University (Moscow, Russia)
2, 3 16th CSR-TI MoD of Russia (Mytishchi, Russia)

Abstract:

Investigations and optimization of the characteristics of lens antennas based on a multilayer spherical Luneberg lens have been carried out. The maximum value of the antenna gain is taken as the optimization criterion. The dependences of the antenna characteristics on the methods of dividing the lens into layers, the number of layers, the geometric dimensions of the lens, the losses in the dielectric and the radiation patterns of the irradiator have been obtained.

To conduct the research, a mathematical model of a lens antenna has been used. This model is based on a strict solution of the problem of diffraction of electromagnetic waves on a multilayer dielectric ball with losses at the arbitrary amplitude-phase distribution of the exciting field. The central place in the algorithm for the numerical solution of the problem is occupied by algorithms for solving systems of ordinary differential equations for radial functions. The specificity of the obtained systems is such that standard matrix run methods cannot be used directly to solve them. An analog of the counter nonmonotonic run method has been developed and implemented for a two-point vector system of equations the leading element selection by line.

Based on the research results, the following recommendations have been formulated for the optimal design of antennas with multilayer spherical Luneberg lenses:

the use of multilayer Luneberg lenses is most appropriate when it is necessary to achieve gain values of more than 42...45 dB, as well as in cases where it is necessary to ensure operation in a continuous frequency band with a width of more than 15...20%;

the advantages of multilayer Luneberg lenses in comparison with a two-layer lens of optimal design are realized when the values of losses in the dielectric are not exceed tgδj ≈ (2...5)∙10–4;

when the number of layers is more 15...20, the methods of dividing the lens into layers are similar in efficiency, with a smaller number of layers the best way of splitting is to ensure the same difference in the dielectric permittivity of neighboring layers;

if the maximum number of lens layers is less 30…50 which is real in practical implementation, for each value of tgδ for a given D/λ, there is an optimal number of layers, an increase beyond which is impractical.

Pages: 46-58
For citation

Zakharov E.V., Skorodumov A.I., Kharlanov Yu.Ya. Antennas based on a multilayer spherical Luneberg lens: investigation and optimization of characteristics. Antennas. 2022. № 4. P. 46–58. DOI: https://doi.org/10.18127/j03209601-202204-05 (in Russian)

References
  1. Skorodumov A.I., Troshin G.I., Kharlanov Yu.Ya. Dielektricheskie linzovye antenny KVCh i SVCh diapazonov. Chast' 1. Zarubezhnaya radioelektronika. 1990. № 4. S. 90–105. (in Russian)
  2. Skorodumov A.I., Troshin G.I., Kharlanov Yu.Ya. Dielektricheskie linzovye antenny KVCh i SVCh diapazonov. Chast' 2. Zarubezhnaya radioelektronika. 1990. № 5. S. 56–66. (in Russian)
  3. Sanford J.R., Mitchell M.A. Luneberg lens revival. Electronics & Wireless World. 1989. V. 95. № 5. P. 456–460.
  4. Vvedenskij A.V., Zakharov E.V., Skorodumov A.I., Kharlanov Yu.Ya. Issledovanie i optimizatsiya kharakteristik izlucheniya sfericheskikh dielektricheskikh linz. Nauchno-tekhnicheskij sbornik. M.: 16 TsNIII MO. 1989. Vyp. 5. S. 29–32. (in Russian)
  5. Vvedenskij A.V., Zakharov E.V., Skorodumov A.I., Kharlanov Yu.Ya. Kharakteristiki antenn so sfericheskimi dielektricheskimi linzami. Radiotekhnika i elektronika. 1991. T. 36. № 4. S. 680–688. (in Russian)
  6. Sanford J.R. Spherically stratified microwave lenses. Ph.D. thesis. École polytechnique fédérale de Lausanne (EPFL). 1992.
  7. Zakharov E.V., Kharlanov Yu.Ya. Polifokal'nye dielektricheskie linzovye antenny: rezul'taty issledovanij i perspektivy primeneniya. Radiotekhnika i elektronika. 2005. T. 50. № 5. S. 571–584. (in Russian)
  8. Thornton J., Huang K.-Ch. Modern lens antennas for communications engineering. IEEE. 2013.
  9. Aperture antennas for millimeter and sub-millimeter wave applications. Ed. A. Boriskin, R. Sauleau. Springer. 2018.
  10. Prache P.M. Lentilles et reflecteurs dielectriques a couches spheriques homogeneous. Annales des Telecommunications. 1961. V. 16. № 3–4. P. 85–95.
  11. Cornbleet S. A simple spherical lens with external foci. The microwave journal. 1965. V. 8. № 5. P. 65–68.
  12. Ap Rhys T.L. The design of radially symmetric lenses. IEEE Transactions on Antennas and Propagation. 1970. V. 18. № 4. P. 497–506.
  13. Zelkin E.G., Petrova R.A. Linzovye antenny. M.: Sov. radio. 1974. (in Russian)
  14. Vvedenskij A.V., Zakharov E.V., Skorodumov A.I., Kharlanov Yu.Ya. Issledovanie i optimizatsiya parametrov linzovoj antenny v vide odnorodnogo dielektricheskogo shara. Izv. vuzov. Radioelektronika. 1991. T. 34. № 2. S. 104–107. (in Russian)
  15. Kharlanov Yu.Ya. Linzovye antenny na osnove odnorodnogo dielektricheskogo shara: kharakteristiki i potentsial'nye vozmozhnosti. Antenny. 2004. № 2. S. 31–46. (in Russian)
  16. Zakharov E.V., Skorodumov A.I., Kharlanov Yu.Ya. Issledovanie i optimizatsiya kharakteristik linzovykh antenn na osnove dvukhslojnogo dielektricheskogo shara. Radiotekhnika i elektronika. 2002. T. 47. № 2. S. 196–203. (in Russian)
  17. Mosallaei H., Rahmat-Samii Ya. Nonuniform Luneburg and two-shell lens antennas: Radiation characteristics and design optimization. IEEE Transaction on Antennas and Propagation. 2001. V. 49. № 1. P. 60–69.
  18. Vvedenskij A.V., Zakharov E.V., Skorodumov A.I., Kharlanov Yu.Ya. Modelirovanie sfericheskikh linzovykh antenn s uchetom kharakteristik obluchatelya. Radiotekhnika i elektronika. 1992. T. 37. № 5. S. 857–862. (in Russian)
  19. Frolov N.Ya. O vybore zakona razbieniya na sloi v sloistykh linzakh Lyuneberga. Trudy Mosk. energ. in-ta. 1974. Vyp. 194. S. 123–126. (in Russian)
  20. Johnson R.C., Jasik H. Antenna engineering handbook. New York: McGraw-Hill Book Co. 1984.
  21. Obukhovets V.A., Frolov N.Ya. Raschet polej i optimizatsiya parametrov mnogoslojnykh tel vrashcheniya. Rasseyanie elektromagnitnykh voln. Taganrog: TRTI. 1976. Vyp. 41. S. 109–120. (in Russian)
  22. Sharvarko V.G., Usmanov Yu.R. Issledovanie mnogoslojnogo sfericheskogo otrazhatelya Lyuneberga. Rasseyanie elektromagnitnykh voln. Taganrog: TRTI. 1985. S. 94–98. (in Russian)
Date of receipt: 15.02.2022
Approved after review: 11.03.2022
Accepted for publication: 26.07.2022