350 rub
Journal Antennas №1 for 2022 г.
Article in number:
State-of-the-art and prospects of radiating systems of active electronically steered arrays
Type of article: overview article
DOI: https://doi.org/10.18127/j03209601-202201-01
UDC: 621.315.55
Authors:

V. V. Zadorozhnyj1, A. Yu. Larin2, N. I. Chikov3
1–3 FSUE “Rostov-on-Don Research Institute of Radio Communication” (Rostov-on-Don, Russia)

Abstract:

The main technical parameters of the radiating systems (RS) of active electronically steered array (AESA) and their antenna elements include: frequency band at the given standing wave ratio (SWR), directivity, electronic scanning angle, beam width, weight and overall dimensions. In the RS production, important characteristics are cost, manufacturability and repeatability of parameters. When RS creating, design engineers strive to obtain the maximum possible technical parameters, taking into account the restrictions on the cost of production and available technologies. In order to improve the parameters of antenna elements and other components of the AESA, new technologies and design solutions are being developed.

The purpose of the article is to overview the main methods for improving the manufacturability and reducing the overall dimensions of the RS, as well as main methods for broadening the RS frequency band.

The reduction of the profile height of the vibrator elements is achieved by choosing the shape of the feed network and introducing of additional passive elements, which allows reducing the profile height by 30% from 0,25λ0 to 0,175λ0. A more significant reduction of the profile height of the vibrator antenna elements is achieved by using a metamaterial substrate, which makes it possible to reduce the profile height by 78% from 0,25λ0 to 0,055λ0 with a relative operating frequency band of 13,7% at the level of SWR ≤ 2. Significant reduction of the RS profile height and broadening of the frequency band is achieved by using the tightly coupled array.

Pages: 5-25
For citation

Zadorozhnyj V.V., Larin A.Yu., Chikov N.I. State-of-the-art and prospects of radiating systems of active electronically steered arrays. Antennas. 2022. № 1. P. 5–25. DOI: https://doi.org/10.18127/j03209601-202201-01 (in Russian)

References
  1. Zadorozhnyj V.V., Larin A.Yu., Ovodov O.V., Khristianov V.D. Optimizatsiya priemnykh tsifrovykh antennykh reshetok. Antenny. 2012. № 9. S. 24–31. (in Russian)
  2. Voloshin V.A., Larin A.Yu., Manuilov M.B., Ovodov O.V. Elektrodinamicheskoe modelirovanie izluchayushchego raskryva mnogoelementnoj FAR s v-obraznymi vibratorami. Obshchie voprosy radioelektroniki. 2009. Vyp. 1. S. 26–30. (in Russian)
  3. Patent № 2542892 RF. Simmetrichnyj vibrator. V.A. Voloshin, V.V. Zadorozhnyj, N.A. Kozlov, A.Yu. Larin i dr. Opubl. 27.02.2015. Byul. № 6. (in Russian)
  4. Obukhovets V.A., Kas'yanov A.O. Mikropoloskovye otrazhatel'nye antennye reshetki. Metody proektirovaniya i chislennoe modelirovanie. M.: Radiotekhnika. 2006. (in Russian)
  5. Kas'yanov A.O., Obukhovets V.A., Mushnikov V.V. Razrabotka malogabaritnykh shirokopolosnykh antenn dlya avarijno-spasatel'nykh buev i avtonomnykh datchikov. Sb. trudov MNTK «Izluchenie i rasseyanie elektromagnitnykh voln» IREMV-2007. Taganrog. 2007. (in Russian)
  6. Logvinenko E.L., Sokol A.V. Shirokopolosnaya pechatnaya simmetrichnaya vibratornaya antenna UVCh-diapazona. Antenny. 2012. № 9. S. 86–89. (in Russian)
  7. Patent № 2638082 RF. Fraktal'nyj izluchatel'. A.Yu. Larin, I.S. Omel'chuk i dr. Opubl. 11.12.2017. Byul. № 35. (in Russian)
  8. Patent № 2592731 RF. Sposob postroeniya antennoj reshetki. V.V. Zadorozhnyj, S.I. Karabutov, A.Yu. Larin i dr. Opubl. 27.07.2016. Byul. № 21. (in Russian)
  9. Zagrebnev A.S., Logvinenko E.L., Potykun A.V. Issledovaniya turniketnykh vibratornykh i shchelevykh izluchatelej krugovoj polyarizatsii, ispol'zuemykh v kachestve elementov antennoj reshetki s shirokim sektorom skanirovaniya. Obshchie voprosy radioelektroniki. 2011. Vyp. 1. S. 16–27. (in Russian)
  10. Volkov A.P., Kozlov K.V., Asinovskij G.S., Mezin V.R. Nizkoprofil'nyj dvukhpolyarizatsionnyj izluchatel' AFAR R-diapazona. Antenny. 2016. № 9. S. 96–101. (in Russian)
  11. Zadorozhnyj V.V., Larin A.Yu., Karabutov S.I., Trekin A.S. Razrabotka mikropoloskovykh izluchatelej dlya antennykh reshetok X-diapazona s rasshirennoj polosoj rabochikh chastot. Radiotekhnika. 2014. № 8. S. 96–100. (in Russian)
  12. Patent № 2667340 RF. Mikropoloskovaya antenna. V.V. Zadorozhnyj, S.I. Karabutov, A.Yu. Larin i dr. Opubl. 18.09.2018. Byul. № 26. (in Russian)
  13. Patent № 2705937 RF. Mikropoloskovaya antenna. V.V. Zadorozhnyj, S.I. Karabutov, A.Yu. Larin i dr. Opubl. 12.11.2019. Byul. № 32. (in Russian)
  14. Schuss J.J., , Upton J., Myers B., Sikina T. et al. The IRIDIUM main mission antenna concept. IEEE Transactions on Antennas and Propagation. 1999. V. 47. № 3. P. 416–424.
  15. Moussessian A., DiDomenico L., Edelstein W. Architectural study of active membrane antennas. 9th International Symposium on Antenna Technology and Applied Electromagnetics. 2002. P. 1–4.
  16. Air & missile defense radar (AMDR) AN-SPY-6(V). Raytheon. 2015.
  17. Weiner M. Missile defense system fight in Washington puts Lockheed's Syracuse-area jobs in crosshairs [Elektronnyj resurs]. URL: www.syracuse.com.
  18. Zadorozhnyj V.V. Strel'chenko L.I., Strel'chenko S.A. Metod sinteza razrezhennoj izluchayushchej sistemy AFAR s zadannym koeffitsientom zapolneniya na osnove geneticheskogo algoritma. Obshchie voprosy radioelektroniki. 2018. Vyp. 1. S. 42–49. (in Russian)
  19. Zadorozhnyj V.V., Strel'chenko L.I., Strel'chenko S.A. Metod snizheniya kolichestva kanalov v aktivnoj fazirovannoj antennoj reshetke na osnove topologicheskoj optimizatsii izluchayushchej sistemy. Radiotekhnika. 2019. № 9. S. 163–175. (in Russian)
  20. Holzwarth S., Litschke O., Simon W., et al Highly integrated 8x8 antenna array demonstrator on LTCC with integrated RF circuitry and liquid cooling. Proceedings of the Fourth European Conference on Antennas and Propagation. 2010. P. 1–4.
  21. Shahramian S., Holyoak M., Singh A., et al A fully integrated scalable W-band phased-array module with integrated antennas, self-alignment and self-test. IEEE International Solid-State Circuits Conference. 2018. P. 74–76.
  22. Kodak U., Rupakula D., et al A 62 GHz Tx/Rx 2x128-element dual-polarized dual-beam wafer-scale phased-array transceiver with minimal reticle-to-reticle stitching. IEEE Radio Frequency Integrated Circuits Symposium. 2019. P. 335–338.
  23. A compact 140 GHz radar chip for detecting small movements, such as heartbeats. IMEC Corp. 2019. P. 1–7.
  24. Shelin A.Yu. RLS N-011M BARS [Elektronnyj resurs]. URL: www.ppt-online.org. (in Russian)
  25. Imaging radar and IFF interrogator system (IRIS) AN/APS-143G(V)1. Telephonics Radar Systems. 2012.
  26. Clark T., Jaska E. Million element ISIS array. IEEE International Symposium on Phased Array Systems and Technology. 2010. P. 29–36.
  27. Qu X., Zhong S.S., Zhang Y.M., Wang W. Design of an S/X dual-band dual-polarised microstrip antenna array for SAR applications. IET Microwave Antennas & Propagation. 2007. № 1. P. 513–517.
  28. Isleifson D., Shafai L. A study on the design of dual-band perforated microstrip antennas for SAR applications. IEEE International Symposium on Antenna Technology and Applied Electromagnetics. 2012. P. 1–3.
  29. Coman C.I., Lager I.E., Ligthart L.P. Multifunction antennas – the interleaved sparse sub-arrays approach. Proceedings of the 3rd European Radar Conference. 2006. P. 315–318.
  30. Ponomarev L.I., Stepanenko V.I. Skaniruyushchie mnogochastotnye sovmeshchennye antennye reshetki. M.: Radiotekhnika. 2009. (in Russian)
  31. Kindt R., Pickles W. Ultrawideband all-metal flared-notch array radiator. IEEE Transactions on Antennas and Propagation. 2010. V. 58. № 11. P. 3568–3575.
  32. Derkachev P.Yu., Manuilov M.B. Elektrodinamicheskij analiz aktivnykh fazirovannykh antennykh reshetok millimetrovogo diapazona na osnove izluchatelej Vival'di. Antenny. 2012. № 9. S. 47–54. (in Russian)
  33. Grinev A.Yu., Bagno D.V., Mosejchuk G.V., Sinani A.I. Shirokopolosnye sistemy izlucheniya dlya antennykh sistem s elektronnym upravleniem luchom mnogofunktsional'nykh radioelektronnykh kompleksov. Antenny. 2013. № 3. S. 3–13. (in Russian)
  34. Il'in E.V., Miloserdov M.S., Temchenko V.S. Pechatnaya logoperiodicheskaya fazirovannaya antennaya reshetka L-diapazona, razmeshchennaya v ogranichennom ob''eme. Antenny. 2013. № 3. S. 14–21. (in Russian)
  35. Holter H. Dual-polarized broadband array antenna with BOR-elements, mechanical design and measurements. IEEE Transactions on Antennas and Propagation. 2007. V. 55. № 2. P. 305–312.
  36. Lee J.J., Livingston S., Koenig R. A low-profile wide-band (5:1) dual-pol array. IEEE Antennas and Wireless Propagation Letters. 2003. V. 2. P. 46–49.
  37. Tzanidis I., Doane J.P., Sertel K., Volakis J.L. Wheeler’s current sheet concept and Munk’s wideband arrays. Proceedings of IEEE International Symposium on Antennas and Propagation. 2012. P. 1–2.
  38. Zhang H., Yang S., et al Ultrawideband phased antenna arrays based on tightly coupled open folded dipoles. IEEE Antennas and Wireless Propagation Letters. 2019. V. 18. № 2. P. 378–382.
  39. Elsallal M., Mather J. An ultra-thin, decade (10:1) bandwidth, modular “BAVA” array with low cross-polarization. Proceedings of IEEE International Symposium on Antennas and Propagation. 2011. P. 1980–1983.
  40. Logan J.T., Vouvakis M.N. On the design of 6:1 mm-wave PUMA arrays. Proceedings of IEEE Antennas and Propagation Society International Symposium. 2013. P. 626–627.
  41. Cooley M., Essman S., Quade S., Geibel S., Spence T., Fontana T., Kenny B. Planar-fed folded notch (PFFN) arrays: A novel wideband technology for multi-function active electronically scanning arrays (AESAs). IEEE International Symposium on Phased Array Systems and Technology. 2016. P. 1–6.
  42. Konkol M.R., Ross D.D., Shi S., Harrity C.E., et al. Photonic tightly coupled array. IEEE Transactions on Microwave Theory and Techniques. 2018. V. 66. № 5. P. 2570–2578.
  43. Zajtsev D.F., Andreev V.M., Bilenko I.A. i dr. Pervaya radiofotonnaya fazirovannaya antennaya reshetka. Radiotekhnika. 2021. № 4. S. 153–164. (in Russian)
Date of receipt: 10.11.2021
Approved after review: 25.11.2021
Accepted for publication: 20.12.2021