350 rub
Journal Antennas №6 for 2021 г.
Article in number:
Electrodynamic modeling of a linearly polarized receiving antenna with an octave operating frequency band
Type of article: scientific article
DOI: https://doi.org/10.18127/j03209601-202106-05
UDC: 621.396
Authors:

G. G. Makarushkin1, K. N. Klimov2

1  PJSC «Almaz» (Moscow, Russia)

2  Moscow Aviation Institute (National Research University) (Moscow, Russia)

Abstract:

The results of numerical electrodynamic modeling of a receiving antenna with linear polarization have been presented. The linear polarization receiving antenna is a rectangular waveguide with a matching diaphragm, a coaxial-waveguide junction and a coaxial input. Numerical electrodynamic modeling of a linear polarization receiving antenna has been carried out in the ANSYS HFSS R2 2019 software package, with a convergence parameter Delta S 0,02 and a step of 0,009F0. As a result of modeling, the frequency characteristics, SWR, gain, directional patterns, reflection coefficient have been obtained.

The VSWR level of the linear polarization receiving antenna does not exceed 2,6 in the operating frequency range. The scanning angle both in elevation and in azimuth is not less than ±30° in the operating frequency range. The value of the gain of the receiving antenna of linear polarization at the lowest frequency of the operating range is 6,1 dB. At the middle frequency of the operating range, the value of the gain of the receiving antenna of linear polarization is 6,48 dB, and at the upper frequency of the working range, the value of the gain is 8,29 dB. The frequency response of the reflectance modulus of the linearly polarized receiving antenna at the lower frequency is –13,5 dB, at the middle frequency of the operating range is –11,3 dB and at the upper frequency of the operating range is –19,7 dB.

The receiving antenna of linear polarization has a wide directional pattern, an acceptable value of the SWR and gain in the operating frequency range, so it can be used in the ultra-wideband digital antenna array [7]. To minimize the effect of the characteristics of the linear polarization receiving antenna, the distance from the phase center of the linear polarized receiving antenna to other elements of the ultra-wideband digital antenna array [7] should be at least the wavelength in free space at the lower frequency of the operating frequency range.

Pages: 43-54
For citation

Makarushkin G.G., Klimov K.N. Electrodynamic modeling of a linearly polarized receiving antenna with an octave operating frequency band. Antennas. 2021. № 6. P. 43–54. DOI: https://doi.org/10.18127/j03209601-202106-05 (in Russian)

References
  1. Drize A.D., Konov K.I. Chislennoe elektrodinamicheskoe modelirovanie volnovodnogo rezhektornogo fil'tra dlya stantsii sputnikovoj svyazi. Innovatsionnye, informatsionnye i kommunikatsionnye tekhnologii. 2019. № 1. S. 469–472. (in Russian)
  2. Konov K.I., Orlova M.O., Gur'eva P.V. K voprosu o chislennom modelirovanii rasprostraneniya elektromagnitnykh voln v sloistykh sredakh. Fundamental'nye i prikladnye issledovaniya v sovremennom mire. 2016. № 16-1. S. 52–53. (in Russian)
  3. Stepanov E.S., Perfil'ev V.V., Konov K.I. Izmerenie kharakteristik fazirovannoj antennoj reshetki s ispol'zovaniem avtomatizirovannogo izmeritel'no-vychislitel'nogo kompleksa. Elektronika i mikroelektronika SVCh. 2019. T. 1. S. 519–523. (in Russian)
  4. ANSYS HFSS. URL: https://www.ansys.com/products/electronics/ansys-hfss (data obrashcheniya: 03.08.2020).
  5. Korkinets V.O., Suchkov A.V., Konov K.I., Bolovin A.A. Linejnaya pechatnaya antennaya reshetka s diagrammoj napravlennosti tipa «COSEC2Θ». Problemy SVCh elektroniki. 2015. T. 2. № 1. S. 152. (in Russian)
  6. Godin A.S., Matsayan M.S., Stepanov E.S. Ispol'zovanie impedansnosoglasovannykh materialov v antennoj tekhnike. Elektronika i mikroelektronika SVCh. 2019. T. 1. S. 529–533. (in Russian)
  7. Markov G.T., Sazonov D.M. Antenny. M.: Energiya. 1975. (in Russian)
  8. Matsayan M.S., Perfil'ev V.V., Klimov K.N. Postroenie sverkhshirokopolosnoj tsifrovoj antennoj reshetki. Elektronika i mikroelektronika SVCh. 2019. T. 1. № 1. S. 539–542. (in Russian)
  9. Konov K.I., Zhilov V.G., Osipov A.A. Elektrodinamicheskoe modelirovanie chastotnykh kharakteristik napravlennogo otvetvitelya diagrammoobrazuyushchej sistemy fazirovannoj antennoj reshetki. Vestnik Kontserna PVO «Almaz-Antej». 2015. № 3. S. 20–28. (in Russian)
  10. Bolovin A.A., Gur'eva P.V., Konov K.I., Novozheeva A.A. Razrabotka i elektrodinamicheskoe modelirovanie raspredelitel'no-summiruyushchej sistemy tverdotel'nogo peredayushchego ustrojstva S-diapazona chastot. Upravlenie innovatsiyami: teoriya, metodologiya, praktika. 2016. № 16. S. 142–145. (in Russian)
  11. Konov K.I., Bolovin A.A. Otsenka pogreshnosti chislennogo elektrodinamicheskogo modelirovaniya simmetrichnykh ustrojstv v programmnom komplekse Ansoft HFSS. Problemy SVCh elektroniki. Moskva. 2015. T. 2. № 1. S. 138–141. (in Russian)
  12. Klimov K.N., Godin A.S., Matsayan M.S. O vozmozhnosti sushchestvovaniya samosoglasovannogo resheniya dlya elektromagnitnogo polya v vakuume. Radiotekhnika i elektronika. 2016. T. 61. № 10. S. 952–956. (in Russian)
  13. Klimov K., Gezha D., Firsov-Shibaev D. Prakticheskoe primenenie elektrodinamicheskogo modelirovaniya. Lambert Academic Publishing: Saarbryukken. 2012. (in Russian)
  14. Sazonov D.M., Gridin A.N., Mishustin B.A. Ustrojstva SVCh. M.: Vysshaya shkola. 1981. (in Russian)
  15. Konov K.I., Stepanov E.S., Godin A.S. Ispol'zovanie metoda partsial'nykh diagramm dlya snizheniya urovnya DN v zadannom napravlenii. Elektronika i mikroelektronika SVCh. 2019. T. 1. S. 534–538. (in Russian)
  16. Matsayan M.S., Perfil'ev V.V., Klimov K.N. Postroenie sverkhshirokopolosnoj tsifrovoj antennoj reshetki. Elektronika i mikroelektronika SVCh. 2019. T. 1. S. 539–542. (in Russian)
Date of receipt: 27.05.2021
Approved after review: 15.06.2021
Accepted for publication: 29.10.2021