350 rub
Journal Antennas №5 for 2021 г.
Article in number:
Results of study and design of radiating systems for array antennas
Type of article: scientific article
DOI: https://doi.org/10.18127/j03209601-202105-06
UDC: 621.396.677.3
Authors:

A. I. Sinani1, A. Yu. Grinev2, G. F. Moseychuk3, D. V. Bagno4, A. E. Zaikin5, E. V. Ilyin6

1, 3 JSC “V. Tikhomirov Scientific Research Institute of Instrument Design” (Zhukovsky, Russia)

2, 4–6 Moscow Aviation Institute (National Research University) (Moscow, Russia)

Abstract:

Results of active phased array antenna radiating elements study and design are summarized in the first part of this article. Different types of topologies are analyzed basing on results of comprehensive numerical electromagnetic modeling, including exponential tapered slot and step slot antennas, microstrip patches, printed vibrators and various stepped waveguide radiators, adapted for use in conjunction with modern AESA transmit-receive modules. Advantages and drawbacks of these types of radiators are emphasized briefly. Open-end rectangular waveguide radiating element fed with surface-integrated waveguide section and fuzz-button transition to X-band LTCC active module is considered to be the most promising still for ±60° scan in 15%-wide bandwidth, providing the most clear linear polarization with axial ratio less then –40 dB. A more technologically advanced printed vibrator array antenna element can compete with the waveguide providing –15 dB axis ratio in the worst frequency/scan angle combination. Numerical modelling shown that, for this, the vibrator's topology has to incorporate an accurate balun to symmetrically feed the vibrator's arms. A sample design of printed vibrator-based X-band array antenna is presented and its performance characteristics are discussed. Finally, some aspects of wideband electrically scanning arrays are discussed. A dual-band (L+S bands) printed tapered slot antenna is considered which incorporates a built-in diplexer and has two inputs.

The second part of this article discusses antennas' and arrays' characteristics improvement by integrating them with artificial media (metastructures) that have some unconventional properties. Reducing the array antenna backscatter pattern outside the operating frequency band (by 5–25 dB in 8–18 GHz the frequency band) is considered based on the introduction of a metastructure with the properties of a space-frequency notch filter. The possibility of reducing the profile height (of the order of 0.07 wavelength) and expanding the operating frequency band has been investigated basing on the introduction of metastructures with the properties of an artificial magnetic conductor. A printed phased array antenna with a low level of cross-polarization (reduced by 28 dB for 45 degrees off-axis angle) has been developed by introducing metastructures with the properties of polarization and spatial-frequency selectivity.

Pages: 52-64
For citation

Sinani A.I., Grinev A.Yu., Moseychuk G.F., Bagno D.V., Zaikin A.E., Ilyin E.V. Results of study and design of radiating systems for array antennas. Antennas. 2021. № 5. P. 52–64. DOI: https://doi.org/10.18127/j03209601-202105-06 (in Russian)

References
  1. Antenny i radary s elektronnym upravleniem luchom. Pod red. A.I. Sinani, G.V. Kaufmana. M.: Radiotekhnika. 2016. (in Russian)
  2. Alekseev O.S., Sinani A.I., Gribanov A.N., Mosejchuk G.F. Proektirovanie izluchayushchej sistemy antenn s elektronnym upravleniem luchom. Antenny. 2005. № 2. S. 21–26. (in Russian)
  3. Sinani A.I. Antennye sistemy s elektronnym upravleniem luchom dlya bortovykh RLS. Antenny. 2008. № 9. S. 4–14. (in Russian)
  4. Sinani A.I., Pozdnyakova R.D., Mitin V.A. Volnovodnaya raspredelitel'naya sistema bortovoj antenny s elektronnym upravleniem luchom. Antenny. 2002. № 6. S. 13–20. (in Russian)
  5. Grinev A.Yu., Bagno D.V., Zajkin A.E., Il'in E.V., Sinani A.I., Mosejchuk G.F. Izluchayushchie elementy sistemy izlucheniya perspektivnoj AFAR X-diapazona. Antenny. 2016. № 10. S. 20–33. (in Russian)
  6. Bataev V.Ya., Demshevskij V.V., Tsitovich A.A., Levashov M.S., Grinev A.Yu., Bagno D.V., Zajkin A.E., Il'in E.V. Razrabotka sistemy izlucheniya AFAR na osnove pechatnogo vibratornogo izluchatelya. Sb. tezisov dokl. nauch.-tekhnich. konf. AO «NPP «Istok» im. Shokina» «SVCh-elektronika – 2018. 75 let razvitiya». 15–16 maya 2018 g., g. Fryazino. S. 63–64. (in Russian)
  7. Charland S. Future electronic warfare: Counter-missile technologies. Electronic Countermeasures. Special Report. M. Richards, Ed. UK: Global Business Media. 2011. P. 3–11. [Elektronnyj resurs]. URL: https://pdfslide.net/documents/special-report-electronic-countermeasures.html. (data obrashcheniya: 15.03.21).
  8. Bataev V.Ya., Demshevskij V.V., Tsitovich A.A., Levashov M.S., Grinev A.Yu., Bagno D.V., Zajkin A.E., Il'in E.V. Razrabotka izluchayushchego polotna AFAR X-diapazona na osnove pechatnogo vibratornogo izluchatelya. Nauch.-tekhnich. sb. «Elektronnaya tekhnika». Ser. 1 «SVCh-tekhnika». 2019. № 3 (542). S. 63–75. (in Russian)
  9. Galkina E.V., Ustinov D.P. Modul' MPP dlya AFAR X-diapazona. Radiolokatsionnye sistemy spetsial'nogo i grazhdanskogo naznacheniya. 2013–2015. Pod red. Yu.I. Belogo. M.: Radiotekhnika. 2013. S. 168–174. (in Russian)
  10. Dalinger A.G., Iovdal'skij V.A., Shatskij S.V., Novoselets V.I. Konstruktsiya priemoperedayushchego modulya AFAR SVCh-diapazona. Elektronnaya tekhnika. Ser. 1 «SVCh-tekhnika». 2016. № 1 (528). S. 95–104. (in Russian)
  11. Gupta K.C., Garg R., Bahl I., Bhartia P. Microstrip lines and slotlines. 2nd Ed. Norwood. MA: Artech House. 1996.
  12. Alekseev O.S., Bronnikov D.V., Bagno D.V., Zajkin A.E., Il'in E.V. Ustrojstva sopryazheniya priemoperedayushchego modulya s izluchayushchimi elementami AFAR X-diapazona. Uspekhi sovremennoj radioelektroniki. 2018. № 6. S. 37–44. (in Russian)
  13. Indenbom M.V. Antennye reshetki podvizhnykh obzornykh RLS. Teoriya, raschet, konstruktsii. M.: Radiotekhnika. 2015. (in Russian)
  14. Grinev A.Yu., Bagno D.V., Mosejchuk G.F., Sinani A.I. Shirokopolosnye sistemy izlucheniya dlya antennykh sistem s elektronnym upravleniem luchom mnogofunktsional'nykh radioelektronnykh kompleksov. Antenny. 2013. № 3. S. 3–13. (in Russian)
  15. Il'in E.V., Miloserdov M.S., Temchenko V.S. Pechatnaya logoperiodicheskaya fazirovannaya antennaya reshetka L-diapazona, razmeshchennaya v ogranichennom ob''eme. Antenny. 2013. № 3. S. 14–21. (in Russian)
  16. Bagno D.V., Balina I.A., Grinev A.Yu., Zajkin A.E. Dvukhdiapazonnyj shchelevoj metallodielektricheskij neodnorodnyj izluchatel' dlya fazirovannykh antennykh reshetok. Antenny. 2013. № 4. S. 22–27. (in Russian)
  17. Grinev A.Yu., Volkov A.P., Sinani A.I., Mosejchuk G.F. Polosno-zagrazhdayushchie chastotno-selektivnye struktury dlya kontrolya diagrammy obratnogo rasseyaniya linejnoj AFAR L-diapazona. Antenny. 2016. № 10. S. 96–101. (in Russian)
  18. Grinev A.Yu., Volkov A.P., Krasnolobov I.I., Baskov K.M., Kakshin V.V. Stop-band frequency-selective structures for controlling backscattering pattern of L-band linear antenna arrays. 2017 Progress In Electromagnetics Research Symposium – Spring (PIERS). St. Petersburg, Russia. 2017. P. 2179–2184.
  19. Grinev A.Yu., Volkov A.P. Teoreticheskoe i eksperimental'noe issledovaniya chastotno-selektivnykh struktur dlya snizheniya rasseivayushchikh svojstv FAR. Radiotekhnika i elektronika. 2019. T. 64. № 6. S. 549–557. (in Russian)
  20. Sievenpiper D.F., Zhang L., Broas R.F.J., Alexopolous N.G., Yablonovitch E. High-impedance electromagnetic surfaces with a forbidden frequency band. IEEE Transactions on Microwave Theory and Techniques. 1999. V. 57. № 11. P. 2059–2074.
  21. Grinev A.Yu., Il'in E.V., Volkov A.P. Raschet parametrov poverkhnosti s vysokim impedansom dlya nizkoprofil'nykh vibratornykh antenn. Antenny. 2012. № 10. S. 57–62. (in Russian)
  22. Volkov A.P., Kozlov K.V., Kurochkin A.P., Grinev A.Yu. Enhanced directivity of low-profile wideband antenna based on artificial magnetic conductor. 2017 Radiation and Scattering of Electromagnetic Waves (RSEMW). Divnomorskoe, Russia. 2017. P. 353–356.
  23. Grinev A.Yu., Kurochkin A.P., Volkov A.P. Nizkoprofil'naya razvyazannaya antennaya sistema na osnove poverkhnosti s vysokim impedansom. Antenny. 2014. № 9. S. 4–11. (in Russian)
  24. Grinev A.Yu., Il'in E.V., Evseev D.A. Uluchshenie polyarizatsionnykh kharakteristik mikropoloskovykh fazirovannykh antennykh reshetok s linejnoj polyarizatsiej. Antenny. 2017. № 10. S. 3–10. (in Russian)
Date of receipt: 17.05.2021
Approved after review: 09.06.2021
Accepted for publication: 18.06.2021