350 rub
Journal Antennas №3 for 2021 г.
Article in number:
Frequency selective antenna radome based on metal-dielectric gratings and perforated screens
Type of article: scientific article
DOI: https://doi.org/10.18127/j03209601-202103-06
UDC: 621.396.677.4
Authors:

A. O. Kasyanov

Southern Federal University (Rostov-on-Don, Russia)

Abstract:

This article is devoted to the analysis of numerical study results of printed frequency selective surfaces scattering characteristics. It has been shown that these frequency selective surfaces may be used as antenna radomes. Numerical results have been obtained by full-wave simulation of frequency-selective surfaces with dielectric covers. The numerical research results of the scattering characteristics of printed frequency selective surfaces as antenna radomes based on metal-dielectric gratings and thick perforated screens have been presented. A comprehensive numerical study of microwave frequency selective surfaces based on multi-element multilayer printed reflectarrays and thick perforated screens has been carried out. Constructive solutions for metal-dielectric structures in integral design, realizing the functions of frequency selective surfaces, have been found. These solutions are based on performed numerical studies. The problems of constructive implementation of multilayer planar spatially selective as frequency selective surfaces have been considered. These frequency selective surfaces are integrated into radiation systems of modern multi-element printed phased arrays. The problems connected with creation of such arrays have been also considered. The numerical simulation results for frequency selective surfaces based on metal gratings with dielectric covers have been obtained. These results can be used to select the most rational options for the topology of metal-dielectric gratings. Such solutions may be useful for design of multifunctional radomes in microwave antenna systems. Based on the obtained numerical data, the possibilities of using flat gratings as frequency selective surfaces in the composition of antenna radomes have been considered. The spatial frequency-selective structures proposed in this work are performed as multi-planar printed gratings. These gratings are designed to ensure electromagnetic compatibility of closely spaced radio electronic sets. These radio electronic sets operate in close frequency ranges. They contain antenna arrays. These arrays are placed under the antenna radomes.

Pages: 39-49
For citation

Kasyanov A.O. Frequency selective antenna radome based on metal-dielectric gratings and perforated screens. Antennas. 2021. № 3. P. 39–49. DOI: https://doi.org/10.18127/j03209601-202103-06 (in Russian)

References
  1. Kaplun V.A. Obtekateli antenn SVCh (radiotekhnicheskij raschet i proektirovanie). M.: Sov. radio. 1974. (in Russian)
  2. Krasyuk V.N. Antenny SVCh s dielektricheskimi pokrytiyami. L.: Sudostroenie. 1986. (in Russian)
  3. Kas'yanov A.O. Matematicheskoe modelirovanie i raschet kharakteristik rasseyaniya pechatnogo chastotno-izbiratel'nogo antennogo obtekatelya. Izvestiya YuFU. Tekhnicheskie nauki. 2020. № 6. S. 129–139. (in Russian)
  4. Kas'yanov A.O., Obukhovets V.A. Metallodielektricheskie chastotno-izbiratel'nye poverkhnosti. Elektromagnitnye volny i elektronnye sistemy. 2009. T. 14. № 11. S. 29–38. (in Russian)
  5. Kas'yanov A.O., Obukhovets V.A. Otrazhatel'nye antennye reshetki kak mikrovolnovye komponenty intellektual'nykh pokrytij. Antenny. 2001. № 4 (50). S. 12–16. (in Russian)
  6. Kas'yanov A.O., Obukhovets V.A. Chislennoe issledovanie mnogofunktsional'nykh obtekatelej antenn sudovykh RLS. Sb. materialov 3-j MNTK «Perspektivnye tekhnologii v sredstvakh peredachi informatsii». Vladimir. 1999. S. 160–166. (in Russian)
  7. Kas'yanov A.O., Koshkid'ko V.G. Primenenie elektrodinamicheskikh metodov analiza pri razrabotke antennykh sistem sudovykh RLS. Izvestiya TRTU. 2000. № 1. Spets. vypusk. Materialy 45-j NTK PPS TRTU. Taganrog: Izd-vo TRTU. S. 19. (in Russian)
  8. Kas'yanov A.O. Obtekatel' antenny sudovoj radiolokatsionnoj stantsii. Sb. trudov Mezhdunar. nauch. konf. «Izluchenie i rasseyanie elektromagnitnykh voln». Taganrog. 2003. S. 96–99. (in Russian)
  9. Kas'yanov A.O., Obukhovets V.A. Difraktsionnye reshetki kak ustrojstva prostranstvenno-chastotnoj i polyarizatsionnoj selektsii. Sb. trudov III Mezhdunar. simpoziuma «Konversiya nauki – mezhdunarodnomu sotrudnichestvu». Tomsk. 1999. S. 406–408. (in Russian)
  10. Kasyanov A.O., Obukhovets V.A. Polarizing filters, converters and modulators based on controllable microstrip diffraction arrays. Proceedings of III International Seminar/Workshop on DIPED’98. Tbilisi. 1998. P. 46–49.
  11. Kas'yanov A.O., Obukhovets V.A. Polyarizatsionnye fil'try, preobrazovateli i modulyatory na osnove upravlyaemykh mikropoloskovykh difraktsionnykh reshetok. Sb. trudov Vseros. konf. «Komp'yuternye tekhnologii v inzhenernoj i upravlencheskoj deyatel'nosti». Ch. 2. Taganrog. 1999. S. 121–126. (in Russian)
  12. Kas'yanov A.O. Rezul'taty chislennogo issledovaniya kharakteristik rasseyaniya pechatnogo chastotno-izbiratel'nogo antennogo obtekatelya. Sb. materialov 30-j Mezhdunar. Krymskoj konf. «SVCh-tekhnika i telekommunikatsionnye tekhnologii». Sevastopol', Krym. 2020. S. 165–166. (in Russian)
  13. Kas'yanov A.O. Chastotno-izbiratel'nye poverkhnosti. Metody proektirovaniya i oblasti primeneniya. Monografiya. Taganrog: Izdatel'stvo Yuzhnogo federal'nogo universiteta. 2019. (in Russian)
  14. Kas'yanov A.O., Obukhovets V.A. Chastotno-izbiratel'nye poverkhnosti. Osnovnye oblasti primeneniya. Antenny. 2005. № 9. S. 4–12. (in Russian)
  15. Kas'yanov A.O., Kas'yanova A.N. Elektrodinamicheskij analiz i razrabotka SAPR-orientirovannykh matematicheskikh modelej pechatnykh antennykh reshetok: monografiya. Taganrog: Izdatel'stvo Yuzhnogo federal'nogo universiteta. 2017. (in Russian)
  16. Khansen R. Skaniruyushchie antennye sistemy SVCh. T. 1, 2. M.: Sov. radio. 1966. T. 1. 1969. T. 2. (in Russian)
  17. Besso P., Bozzi M., Perregrini L., Salghetti Drioli L., Nickerson W. Deep space antenna for Rosetta mission: Design and testing of the S/X-band dichroic mirror. IEEE Transactions on Antennas and Propagation. 2003. V. 51. № 3. P. 388–394.
  18. Bozzi M., Perregrini L., Weinzierl J., Winnewisser C. Efficient analysis of quasi-optical filters by a hybrid MoM/BI-RME method. IEEE Transactions on Antennas and Propagation. 2001. V. 49. № 7. P. 1054–1064.
  19. Bozzi M., Perregrini L., Weinzierl J., Winnewisser C. Design, fabrication, and measurement of frequency-selective surfaces. Optical Engineering. 2000. V. 39. № 8. P. 2263–2269.
  20. Besso P., Bozzi M., Brenner M., Junker S., Madde R., Perregrini L., Salghetti Drioli L. Electrical and mechanical performance of a S/X/Ka-band dichroic mirror. Proceedings of EuMC 2000. Paris, France. 2000. P. 290–293.
Date of receipt: 10.05.2021
Approved after review: 21.05.2021
Accepted for publication: 26.05.2021