350 rub
Journal Antennas №2 for 2021 г.
Article in number:
Nondestructive method of measurement of laminated plates dielectric parameters
Type of article: scientific article
DOI: https://doi.org/10.18127/j03209601-202102-11
UDC: 621.372.413
Authors:

Yu. G. Belov¹, V. V. Biryukov², I. A. Egorov³

1,2 Nizhny Novgorod State Technical University n.a. R.E. Alekseev (Nizhny Novgorod, Russia)

3  JSC “Scientific and Production Enterprise “Polyot” (Nizhny Novgorod, Russia)

Abstract:

The methods for measuring the parameters of dielectric materials of foil plates have been considered. It has been shown that for “non-destructive measurements” (i.e., without removing the metal foil from the dielectric plate), a method based on the excitation of electromagnetic oscillations in a rectangular plate considered as a resonator can be used. Based on the results of measurements of their resonant frequencies and Q-factors, the relative permittivity and the tangent of the dielectric loss angle of the material can be determined. The calculated relations obtained by the authors of the article in one of the early works using the electrodynamic model of a resonator with “magnetic walls” at the ends have been presented. The Q-factor of the resonator has been calculated by the perturbation method, taking into account the losses in the plate dielectric and metallization layers. The results of measurements for four samples from different dielectrics in the frequency range 200...1000 MHz have been presented. The experimental method has been described, in particular, the method of identifying the type of oscillation, the procedure for processing the measurement results. Due to the high sensitivity of the vector analyzer, measurements have been made with a possible small connection of the resonator (metallized plate) with the measuring circuit. This made it possible to minimize the influence of the coupling elements on the measured Qfactor of the oscillations and to consider this Q-factor close to its own. The presented results are in good agreement with the reference data for the materials. The conducted studies have shown the possibility of using a resonator model with “magnetic walls” at the ends for the analysis of electromagnetic oscillations in a foil dielectric plate and, accordingly, using the relations obtained in this case to determine the parameters of the dielectric plate. The conditions for using this model are the small thickness of the plate in comparison with its transverse dimensions and relatively low operating frequencies. The method, which is based on the calculated ratios of the electrodynamic model of the resonator with “magnetic” walls at the ends, provides a sufficiently high accuracy of determining the relative permittivity of the plate material, which led to the use of it (the method) in practice to control the parameters of foil dielectric plates intended for the manufacture of microwave and UHF-band microcircuits. The studies, the results of which have been presented in this paper, allow us to conclude that this method can also be recommended for determining the tangent of the dielectric loss angle of the plate material.

Pages: 82-89
For citation

Belov Yu.G., Biryukov V.V., Egorov I.A. Nondestructive method of measurement of laminated plates dielectric parameters. Antennas. 2021. № 2. P. 82–89. DOI: https://doi.org/10.18127/j03209601-202102-11 (in Russian)

References
  1. Bakharev S.I., Vol'man V.I., Lib Yu.N. i dr. Spravochnik po raschetu i konstruirovaniyu SVCh poloskovykh ustrojstv. M.: Radio i svyaz'. 1982. (in Russian)
  2. Medvedev A., Mozharov V., Mylov G. Pechatnye platy. Sovremennoe sostoyanie bazovykh materialov. Pechatnyj montazh. 2011. № 5. S. 148–162. (in Russian)
  3. Bogdanov Yu., Kochemasov V., Khas'yanova E. Fol'girovannye dielektriki – kak vybrat' optimal'nyj variant dlya pechatnykh plat VCh/SVCh-diapazonov. Ch. 1. Pechatnyj montazh. 2013. № 2. S. 156–168. (in Russian)
  4. Brandt A.A. Issledovanie dielektrikov na sverkhvysokikh chastotakh. M.: Fizmatgiz. 1963. (in Russian)
  5. Zajtsev A.N., Ivashchenko P.A., Myl'nikov A.V. Izmereniya na sverkhvysokikh chastotakh i ikh metrologicheskoe obespechenie. M.: Izdvo standartov. 1989. (in Russian)
  6. Egorov V.N. Rezonansnye metody issledovaniya dielektrikov na SVCh (obzor). Pribory i tekhnika eksperimenta. 2007. № 2. S. 5–38. (in Russian)
  7. Kent G. An evanescent-mode tester for ceramic dielectric substrates. IEEE Transactions on Microwave Theory and Techniques. 1988. V. 36. № 10. P. 1451–1454.
  8. Kent G. Nondestructive permittivity measurement of substrates. IEEE Transactions on Instrumentation and Measurement. 1996. V. 45. № 2. P. 102–106.
  9. Janezic M.D. Full-wave analysis a split cylinder resonator for nondestructive permittivity measurements. IEEE Transactions on Microwave Theory and Techniques. 1999. V. 47. № 10. P. 2014–2020.
  10. GOST R 8.623-2006. GSI. Otnositel'naya dielektricheskaya pronitsaemost' i tangens ugla dielektricheskikh poter' tverdykh dielektrikov. Metodiki vypolneniya izmerenij v diapazone sverkhvysokikh chastot. (in Russian)
  11. Conrood J. Methods for characterizing the dielectric constant of microwave PCB laminates. Microwave Journal. 2011. № 5. P. 132–144.
  12. IPC-TM-650. Standard test methods.
  13. Belov Yu.G., Voroshilov B.I., Malakhov V.A., Nefed'ev I.A. Issledovanie elektromagnitnykh kolebanij v rezonatore, obrazovannom dielektricheskoj plastinoj s dvukhstoronnej metallizatsiej. Trudy NGTU. 2015. № 1. S. 35–41. (in Russian)
  14. Belov Yu.G., Biryukov V.V., Egorov I.A. Operativnyj kontrol' parametrov dielektrika laminirovannykh plastin s ispol'zovaniem avtomatizirovannoj izmeritel'noj ustanovki. Vestnik NGIEI. 2018. № 8 (87). S. 15–24. (in Russian)
  15. Maloratskij L.G. Mikrominiatyurizatsiya elementov i ustrojstv SVCh. M.: Sov. radio. 1976. (in Russian)
  16. NTO «ALVIS» – Proizvodstvo kaprolona razlichnykh marok i lyubykh form [Elektronnyj resurs]. URL: http://www.kaprolon-alvis.ru. (in Russian)
  17. Nauchno-proizvodstvennoe predpriyatie «Elektroresurs» [Elektronnyj resurs]. URL: http://kast-b.ru. (in Russian)
Date of receipt: 02.02.2021
Approved after review: 19.02.2021
Accepted for publication: 02.03.2021